Метод полного перебора конечного числа случаев, исчерпывающих все возможности, называется полной индукцией. Этот метод имеет крайне ограниченную область применения в математике, так как обычно математические утверждения касаются бесконечного множества объектов (например, натуральных чисел, простых чисел, квадратов и т.п.) и перебрать их невозможно.
Существует метод рассуждений, который позволяет заменить неосуществимый бесконечный перебор доказательством того, что если утверждение истинно в одном случае, то оно окажется истинным и в следущем за ним случае. Этот метод носит название математической индукции (или рассуждением от $n$ к $n+1$)
- Основы метода математической индукции
- Математическая индукция: задачи и решения
- Доказательство кратности и делимости
- Доказательство равенств и неравенств
- Вычисление сумм
- Заказать решение
- Полезные ссылки о ММИ
- Кратенький видеоурок о ММИ
- Метод математической индукции
- Понятия индукции и дедукции
- В чем заключается метод математической индукции
- Как применять метод математической индукции при решении неравенств и уравнений
- math4school.ru
- Метод математической индукции
- Немного теории
- Задачи с решениями
- Задачи без решений
- 📸 Видео
Видео:Метод математической индукцииСкачать
Основы метода математической индукции
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ — натуральное число) справедливо при $forall n in N$, если:
- Утверждение $P(n)$ справедливо при $n=1$.
- Для $forall k in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с помощью метода математической индукции проводится в два этапа:
- База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
- Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
- Доказательство делимости и кратности
- Доказательство равенств и тождеств
- Задачи с последовательностями
- Доказательство неравенств
- Нахождение суммы и произведения
Ниже вы найдете примеры решения задач, иллюстрирующие применение метода математической индукции, а также ссылки на полезные сайты и учебник и небольшой видеоурок по ММИ.
Видео:9 класс, 25 урок, Метод математической индукцииСкачать
Математическая индукция: задачи и решения
Доказательство кратности и делимости
Задача 1. Докажите, что $5^n-4n+15$ делится на 16 при всех $n in N_0$.
Задача 2. Доказать, что при любом натуральном $n$ число $a_n$ делится на $b$.
$$a_n = 2n^3+3n^2+7n, quad b=6.$$
Задача 3. Докажите методом математической индукции: $4^ + 1$ кратно 5 для всех $n ge 1$.
Задача 4. Используя метод математической индукции, докажите, что для любого натурального числа истинно следующее утверждение: $6^+3^+3^$ кратно 11.
Доказательство равенств и неравенств
Задача 5. Доказать равенство
Задача 6. Доказать методом математической индукции:
Задача 7. Доказать неравенство:
Задача 8. Доказать утверждение методом математической индукции:
$$ left(1-fracright)left(1-fracright)left(1-fracright)cdot . cdotleft(1-fracright) =frac quad (n ge 2). $$
Задача 9. Доказать неравенство:
$$ 2!cdot 4! cdot . cdot (2n)! gt [(n+1)!]^n quad (n gt 2).$$
Задача 10. Докажите методом математической индукции неравенство Бернулли: $(1+a)^n gt 1 + acdot n$ для всех $nin N$ и $a gt -1$, $a in R$.
Вычисление сумм
Задача 11. Доказать методом математической индукции:
Задача 12. Найдите сумму
$$1 cdot 1! + 2 cdot 2! + . . . + 2012 cdot 2012! + 2013 cdot 2013!$$
Видео:Метод математической индукции. 9 класс.Скачать
Заказать решение
Если вам нужна помощь с решением задач по любым разделам математики, обращайтесь в МатБюро. Выполняем контрольные и практические работы, ИДЗ и типовые расчеты на заказ. Стоимость задания от 60 рублей , оформление производится в Word, срок от 2 дней.
Видео:10 класс, 6 урок, Метод математической индукцииСкачать
Полезные ссылки о ММИ
- ММИ: краткая теория и примеры решений Страничка виртуальной школы юного математика. Разобраны примеры (в том числе для геометрии) и даны задачи для самостоятельной работы.
- Виленкин Н.Я. Индукция. Комбинаторика Классическое пособие по методу математической индукции и комбинаторике (базовые понятия и примеры задач).
- Математическая индукция. Основные определения и 10 разобранных решений.
- Николаева С.А. Метод математической индукции: методическое пособие для учителей и учащихся.
- А. Шень Математическая индукция. Пособие для школьников, разобраны 29 задач, из них 19 с полным решением.
Видео:МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ и его применения #матанСкачать
Кратенький видеоурок о ММИ
Видео:Метод математической индукцииСкачать
Метод математической индукции
Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n — 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n — 1 · b + . . . + C n n — 1 · a · b n — 1 + C n n · b n .
В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.
Видео:Математика без Ху!ни ! ;) Математическая индукция. Метод доказательства формул.Скачать
Понятия индукции и дедукции
Для начала рассмотрим, что такое вообще индукция и дедукция.
Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.
Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.
В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.
Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n ( n + 1 ) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:
S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .
Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.
Видео:#163. МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИСкачать
В чем заключается метод математической индукции
В основе этого метода лежит одноименный принцип. Он формулируется так:
Некое утверждение будет справедливым для натурального значения n тогда, когда 1 ) оно будет верно при n = 1 и 2 ) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .
Применение метода математической индукции осуществляется в 3 этапа:
- Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
- После этого мы проверяем верность при n = k .
- И далее доказываем справедливость утверждения в случае, если n = k + 1 .
Видео:Метод математической индукции кратностьСкачать
Как применять метод математической индукции при решении неравенств и уравнений
Возьмем пример, о котором мы говорили ранее.
Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n ( n + 1 ) = n n + 1 .
Решение
Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.
- Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
- Далее делаем предположение, что формула S k = k k + 1 верна.
- В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.
Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1 :
S k + 1 = S k + 1 k + 1 ( k + 2 )
Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:
S k + 1 = S k + 1 k + 1 ( k + 2 ) .
Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:
S k + 1 = S k + 1 k + 1 ( k + 2 ) = k k + 1 + 1 k + 1 ( k + 2 ) = = k ( k + 2 ) + 1 k + 1 ( k + 2 ) = k 2 + 2 k + 1 k + 1 ( k + 2 ) = ( k + 1 ) 2 k + 1 ( k + 2 ) = k + 1 k + 2
Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.
Ответ: предположение о формуле S n = n n + 1 является верным.
Возьмем более сложную задачу с тригонометрическими функциями.
Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .
Решение
Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.
cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α
Следовательно, при n , равном единице, тождество будет верным.
Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .
Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.
Согласно тригонометрической формуле,
sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 ( sin ( 2 k + 1 α + 2 k + 1 α ) + sin ( 2 k + 1 α — 2 k + 1 α ) ) = = 1 2 sin ( 2 · 2 k + 1 α ) + sin 0 = 1 2 sin 2 k + 2 α
cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α
Ответ: На этом тождество можно считать доказанным. Мы успешно применили для этого метод математической индукции. Точно так же мы можем доказать справедливость формулы бинома Ньютона.
Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.
Видео:Метод математической индукции. Доказательство неравенств.Скачать
math4school.ru
Видео:10 класс. Алгебра. Метод математической индукции. Доказать, что при любом натуральном n выражение...Скачать
Метод математической индукции
Немного теории
Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:
10=5+5 12=5+7 14=7+7 16=5+11 . . . 92=3+89 94=5+89 96=7+89 98=19+79.
Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.
Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:
1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n0);
2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.
Задачи с решениями
1. Доказать , что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.
Проведём доказательство методом математической индукции.
Обозначим А(n)=3 2n+1 +2 n+2 .
База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.
Предположение индукции. Пусть А(k) делится на 7.
Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.
А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=
=3 2k+1 ·9+2 k+2 ·(9–7)=(3 2k+1 +2 k+2 )·9–7·2 k+2 =9·А(k)–7·2 k+2 .
Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.
2. Доказать, что при любом натуральном n число 2 3 n +1 делится на 3 n+1 и не делится на 3 n+2 .
Введём обозначение: аi=2 3 i +1.
При n=1 имеем, а1=2 3 +1=9. Итак, а1 делится на 3 2 и не делится на 3 3 .
Пусть при n=k число аk делится на 3 k+1 и не делится на 3 k+2 , то есть аk=2 3 k +1=3 k+1 ·m, где m не делится на 3. Тогда
аk+1=2 3 k+1 +1=(2 3 k ) 3 +1=(2 3 k +1)( 2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k )=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k )=
=3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k ).
Очевидно, что аk+1 делится на 3 k+2 и не делится на 3 k+3 .
Следовательно, утверждение доказано для любого натурального n.
3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.
Введём обозначение: аi=х i +1/х i и сразу отметим, что аi=а–i, поэтому дальше будем вести речь о натуральных индексах.
Заметим: а1 – целое число по условию; а2 – целое, так как а2=(а1) 2 –2; а0=2.
Предположим, что аk целое при любом натуральном k не превосходящем n. Тогда а1·аn – целое число, но а1·аn=аn+1+аn–1 и аn+1=а1·аn–аn–1. Однако, аn–1, согласно индукционному предположению, – целое. Значит, целым является и аn+1. Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.
4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство
5. Доказать, что при натуральном n > 1 и |х| n +(1+x) n n .
Воспользуемся методом математической индукции.
При n=2 неравенство верно. Действительно,
(1–x) 2 +(1+x) 2 = 2+2·х 2 2 .
Если неравенство верно при n=k, то при n=k+1 имеем
(1–x) k+1 +(1+x) k+1 k +(1+x) k )((1–х)+(1+х)) k ·2 = 2 k+1 .
Неравенство доказано для любого натурального n > 1.
6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.
Воспользуемся методом математической индукции.
При n=1 утверждение очевидно.
Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).
Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.
7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:
1) каждая его вершина окрашена в один из трёх цветов;
2) любые две соседние вершины окрашены в разные цвета;
3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.
Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.
Воспользуемся методом математической индукции.
База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.
Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.
Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А1, А2, А3, … Аn, Аn+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.
Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А1, а цифрой 2 цвет вершины А2. Пусть k – такой наименьший номер, что вершина Аk окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю Аk–2Аk треугольник Аk–2 Аk–1Аk. В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А1А2 … Аk–2АkАk+1 … Аn+1, который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.
8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.
Проведём доказательство методом математической индукции.
Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.
Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.
Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.
Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.
9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.
С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.
Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что
Естественно предположить, что
или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,
Докажем справедливость этой формулы методом математической индукции.
Для n=1 формула уже проверена.
Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,
что и требовалось доказать.
10. В выражении х1:х2: … :хn для указания порядка действий расставляются скобки и результат записывается в виде дроби:
(при этом каждая из букв х1, х2, … , хn стоит либо в числителе дроби, либо в знаменателе). Сколько различных выражения можно таким образом получить при всевозможных способах расстановки скобок?
Прежде всего ясно, что в полученной дроби х1 будет стоять в числителе. Почти столь же очевидно, что х2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х2, относится либо к самому х2, либо к какому-либо выражению, содержащему х2 в числителе).
Можно предположить, что все остальные буквы х3, х4, … , хn могут располагаться в числителе или знаменателе совершенно произвольным образом. Отсюда следует, что всего можно получить 2 n–2 дробей: каждая из n–2 букв х3, х4, … , хn может оказаться независимо от остальных в числителе или знаменателе.
Докажем это утверждение по индукции.
При n=3 можно получить 2 дроби:
так что утверждение справедливо.
Предположим, что оно справедливо при n=k и докажем его для n=k+1.
Пусть выражение х1:х2: … :хk после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо хk подставить хk:хk+1, то хk окажется там же, где и было в дроби Q, а хk+1 будет стоять не там, где стояло хk (если хk было в знаменателе, то хk+1 окажется в числителе и наоборот).
Теперь докажем, что можно добавить хk+1 туда же, где стоит хk. В дроби Q после расстановки скобок обязательно будет выражение вида q:хk, где q – буква хk–1 или некоторое выражение в скобках. Заменив q:хk выражением (q:хk):хk+1=q:(хk·хk+1), мы получим, очевидно, ту же самую дробь Q, где вместо хk стоит хk·хk+1.
Таким образом, количество всевозможных дробей в случае n=k+1 в 2 раза больше чем в случае n=k и равно 2 k–2 ·2=2 (k+1)–2 . Тем самым утверждение доказано.
Ответ: 2 n–2 дробей.
Задачи без решений
1. Доказать, что при любом натуральном n:
а) число 5 n –3 n +2n делится на 4;
б) число n 3 +11n делится на 6;
в) число 7 n +3n–1 делится на 9;
г) число 6 2n +19 n –2 n+1 делится на 17;
д) число 7 n+1 +8 2n–1 делится на 19;
е) число 2 2n–1 –9n 2 +21n–14 делится на 27.
2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).
3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.
4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.
5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.
📸 Видео
Доказать неравенство ★ 3^n+4^n≤5^n, для n≥3 ★ Метод математической индукцииСкачать
Математическая индукция. Высшая математика. ОлимпиадыСкачать
Метод математической индукции Демидович #10 г)Скачать
11 класс - Алгебра - Метод математической индукцииСкачать
Метод математической индукции. Видеоурок по алгебре 9 классСкачать
КТО ТАКАЯ ЭТА ВАША МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ?Скачать
Алгебра 9 класс (Урок№39 - Метод математической индукции.)Скачать
Неравенство Бернулли и метод математической индукцииСкачать
Математика это не ИсламСкачать