Решение уравнений методом интервалов 9 класс с объяснением

Видео:Решение квадратных неравенств методом интервалов. 8 класс.Скачать

Решение квадратных неравенств методом интервалов. 8 класс.

Метод интервалов, решение неравенств

Решение уравнений методом интервалов 9 класс с объяснением

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

Решение уравнений методом интервалов 9 класс с объяснением

где x — переменная,

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Видео:Алгебра 9. Урок 7 - Неравенства. Метод интервалов - основные фактыСкачать

Алгебра 9. Урок 7 - Неравенства. Метод интервалов - основные факты

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax 2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два различных корня;
  3. D 2 + bx + c.

Решение уравнений методом интервалов 9 класс с объяснением

Если требуется найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c больше нуля, то этот числовой промежуток находится там, где парабола лежит выше оси ОХ.

Если нужно найти числовой промежуток, на котором квадратный трехчлен ax 2 + bx + c меньше нуля — это числовой промежуток, где парабола лежит ниже оси ОХ.

Если квадратное неравенство нестрогое, то корни входят в числовой промежуток. А если строгое — не входят.

Обучение на курсах по математике в онлайн-школе Skysmart сделает сложные темы понятными, а высокий балл на экзаменах — достижимым!

Видео:Алгебра 9 класс (Урок№20 - Решение неравенств методом интервалов.)Скачать

Алгебра 9 класс (Урок№20 - Решение неравенств методом интервалов.)

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, 2 + bx + c из левой части квадратного неравенства.

Изобразить координатную прямую и при наличии корней отметить их на ней.
Решение уравнений методом интервалов 9 класс с объяснением

Если неравенство строгое, нужно отметить корни пустыми (выколотыми) точками. Если нестрогое — обычными точками. Именно эти точки разбивают координатную ось на промежутки.

Решение уравнений методом интервалов 9 класс с объяснением

  • Определить, какие знаки имеют значения трехчлена на каждом промежутке (если на первом шаге нашли нули) или на всей числовой прямой (если нулей нет). И проставить над этими промежутками + или − в соответствии с определенными знаками.
  • Если квадратное неравенство со знаком > или ≥ — наносим штриховку над промежутками со знаками +.

    Если неравенство со знаком 2 + 4x — 5, его корнями являются числа -5 и 1, они разбивают числовую ось на три промежутка: (-∞, -5), (-5, 1) и (1, +∞).

    Определим знак трехчлена x 2 + 4x — 5 на промежутке (1, +∞). Для этого вычислим значение данного трехчлена при некотором значении x из этого промежутка. Можно брать любое значение переменной, главное — чтобы вычисления были простыми. В нашем случае, возьмем x = 2. Подставим его в трехчлен вместо переменной x:

    • 2 2 + 4 * 2 — 5 = 4 + 8 — 5 = 7.

    7 — положительное число. Это значит, что любое значение квадратного трехчлена на интервале (1, +∞) будет положительным. Так мы определили знак плюс.

    Определим знаки на оставшихся двух промежутках. Начнем с интервала (-5, 1). Из этого интервала можем взять x = 0 и вычислить значение квадратного трехчлена при этом значении переменной:

    • 0 2 + 4 * 0 — 5 = 0 + 0 — 5 = -5.

    Так как -5 — отрицательное число, то на этом интервале все значения трехчлена будут отрицательными. Так мы определили знак минус.

    Осталось определиться со знаком на промежутке (-∞, -5). Возьмем x = -6, подставляем:

    • (-6) 2 + 4 * (-6) — 5 = 36 — 24 — 5 = 7.

    Следовательно, искомый знак — плюс.

    Можно расставить знаки быстрее, если запомнить эти факты:

    Видео:Метод интервалов #1Скачать

    Метод интервалов #1

    Плюс или минус: как определить знаки

    Можно сделать вывод о знаках по значению старшего коэффициента a:

    если a > 0, последовательность знаков: +, −, +,

    если a 0, последовательность знаков: +, +,

    если a 2 — 7 не имеет корней и на промежутке (−∞, +∞) его значения отрицательны, так как коэффициент при x 2 есть отрицательное число -4, и свободный член -7 тоже отрицателен.

    • Когда квадратный трехчлен при D > 0 имеет два корня, то знаки его значений на промежутках чередуются. Это значит, что достаточно определить знак на одном из трех промежутков и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей: +, −, + или −, +, −.
    • Если квадратный трехчлен при D = 0 имеет один корень, то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. Это значит, что достаточно определить знак над одним из них и над другим поставить такой же. При этом получится, либо +, +, либо −, −.
    • Когда квадратный трехчлен корней не имеет (D

    Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

    Пример 1. Решить неравенство методом интервалов: x^2 — 5x + 6 ≥ 0.



      Разложим квадратный трехчлен на множители.
      Решение уравнений методом интервалов 9 класс с объяснением

    Неравенство примет вид:

    Проанализируем два сомножителя:

    Первый: х — 3. Этот сомножитель может поменять знак при х = 3, значит при х 0 принимает положительные значения: х — 3 > 0.

    Второй: х — 2. Для этого сомножителя такая «знаковая» точка: х = 2.

    Вывод: знак произведения (х — 3) * (х — 2) меняется только при переходе переменной через значения х = 3 и х = 2.

    В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

  • Построим чертеж.
    Решение уравнений методом интервалов 9 класс с объяснением
  • Рассмотрим интервалы в том же порядке, как пишем и читаем: слева направо.

    Отобразим эти данные на чертеже:

    Решение уравнений методом интервалов 9 класс с объяснением

    2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

    • (25 — 3) (25 — 2) = 22*23 = 506 > 0

    Вывод: при х > 3 верно неравенство (х — 3) * (х — 2) > 0. Внесем эти данные в чертеж.

    Решение уравнений методом интервалов 9 класс с объяснением
    Исходное неравенство: (х — 3) * (х — 2) ≥ 0.

    Если (х — 3) * (х — 2) > 0:

    Если (х — 3) (х — 2) = 0 — при х1 = 3, х2 = 2.

    Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

    Решение уравнений методом интервалов 9 класс с объяснением

    Ответ: х ≤ 0, х ≥ 3.

    Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

    Видео:Решение неравенств методом интервалов. Алгебра, 9 классСкачать

    Решение неравенств методом интервалов. Алгебра, 9 класс

    Метод интервалов, примеры, решения

    Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

    Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

    Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

    Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

    Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

    Алгоритм

    Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f ( x ) 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥ ). Здесь f ( x ) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

    • произведение линейных двучленов с коэффициентом 1 при переменной х ;
    • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

    Приведем несколько примеров таких неравенств:

    ( x + 3 ) · ( x 2 − x + 1 ) · ( x + 2 ) 3 ≥ 0 ,

    ( x — 2 ) · ( x + 5 ) x + 3 > 0 ,

    ( x − 5 ) · ( x + 5 ) ≤ 0 ,

    ( x 2 + 2 · x + 7 ) · ( x — 1 ) 2 ( x 2 — 7 ) 5 · ( x — 1 ) · ( x — 3 ) 7 ≤ 0 .

    Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

    • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
    • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
    • определяем знаки выражения f ( x ) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
    • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».

    Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

    При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

    Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

    Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Научные основы метода промежутков

    Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале ( a , b ) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей ( − ∞ , a ) и ( a , + ∞ ) .

    Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

    Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x — 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: ( − ∞ , − 1 ) , ( − 1 , 5 ) и ( 5 , + ∞ ) .

    Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток ( − ∞ , − 1 ) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t − 1 , и так как − 1 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t 5 .

    Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 0 и t − 5 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке ( − ∞ , − 1 ) .

    Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t — 5 t + 1 будет положительным. Это значит, что значение выражения x — 5 x + 1 будет положительным при любом значении x из промежутка ( − ∞ , − 1 ) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».

    Видео:Решение неравенств методом интервалов | Алгебра 9 класс #15 | ИнфоурокСкачать

    Решение неравенств методом интервалов | Алгебра 9 класс #15 | Инфоурок

    Нахождение нулей числителя и знаменателя

    Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

    Рассмотрим дробь x · ( x — 0 , 6 ) x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · ( x − 0 , 6 ) = 0 и x 7 · ( x 2 + 2 · x + 7 ) 2 · ( x + 5 ) 3 = 0 .

    В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.

    Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , ( x 2 + 2 · x + 7 ) 2 = 0 , ( x + 5 ) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения — 5 . Это нули знаменателя.

    0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

    В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

    Видео:КВАДРАТНЫЕ НЕРАВЕНСТВА ПОНЯТНЫМ ЯЗЫКОМСкачать

    КВАДРАТНЫЕ НЕРАВЕНСТВА  ПОНЯТНЫМ ЯЗЫКОМ

    Определение знаков на интервалах

    Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

    Рассмотрим это утверждение на примере.

    Возьмем неравенство x 2 — x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число — 3 . Получаем два промежутка на числовой прямой ( − ∞ , − 3 ) и ( − 3 , + ∞ ) .

    Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 — x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.

    Из первого промежутка ( − ∞ , − 3 ) возьмем − 4 . При x = − 4 имеем ( — 4 ) 2 — ( — 4 ) + 4 ( — 4 ) + 3 = — 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « — ».

    Для промежутка ( − 3 , + ∞ ) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 — 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».

    Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

    Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».

    Теперь обратимся к примерам.

    Возьмем неравенство ( x — 2 ) · ( x — 3 ) 3 · ( x — 4 ) 2 ( x — 1 ) 4 · ( x — 3 ) 5 · ( x — 4 ) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.

    Решение уравнений методом интервалов 9 класс с объяснением

    Нули знаменателя отметим пустыми точками.

    Решение уравнений методом интервалов 9 класс с объяснением

    Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

    Решение уравнений методом интервалов 9 класс с объяснением

    Теперь расставим точки на промежутках. Крайний правый промежуток ( 4 , + ∞ ) будет знак + .

    Решение уравнений методом интервалов 9 класс с объяснением

    Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения ( x − 4 ) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале ( 3 , 4 ) будет знак минус.

    Решение уравнений методом интервалов 9 класс с объяснением

    Переходим к интервалу ( 2 , 3 ) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям ( x − 3 ) 3 и ( x − 3 ) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.

    Решение уравнений методом интервалов 9 класс с объяснением

    Точка с координатой 2 – это нуль числителя. Степень выражения х — 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

    Решение уравнений методом интервалов 9 класс с объяснением

    У нас остался последний интервал ( − ∞ , 1 ) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения ( x − 1 ) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

    Решение уравнений методом интервалов 9 класс с объяснением

    Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

    x + 3 — 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 — 3 4 ( x — 1 ) 2 · x — 2 3 5 · ( x — 12 )

    в любой точке интервала 3 — 3 4 , 3 — 2 4 .

    Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.

    Видео:Метод интервалов | решение неравенств | 9 класс МакарычевСкачать

    Метод интервалов | решение неравенств | 9 класс Макарычев

    Метод интервалов

    Этот видеоурок доступен по абонементу

    У вас уже есть абонемент? Войти

    Решение уравнений методом интервалов 9 класс с объяснением

    На этом уроке мы дадим определение рационального неравенства и рассмотрим его решение с помощью метода интервалов двумя способами: с помощью исследования графика функции и с помощью таблицы знаков каждого множителя. Также решим ряд примеров, иллюстрирующих рассматриваемые темы.

    🎬 Видео

    Метод интервалов #3Скачать

    Метод интервалов #3

    Решение квадратных неравенств | МатематикаСкачать

    Решение квадратных неравенств | Математика

    Решение неравенств методом интервалов. Видеоурок 13. Алгебра 9 классСкачать

    Решение неравенств методом интервалов. Видеоурок 13. Алгебра 9 класс

    УНИВЕРСАЛЬНЫЙ МЕТОД при решении Неравенств — Метод ИнтерваловСкачать

    УНИВЕРСАЛЬНЫЙ МЕТОД при решении Неравенств  — Метод Интервалов

    МЕТОД ИНТЕРВАЛОВ с Нуля + ДЗ (Задания 15 ЕГЭ 2024 по Математике Профиль)Скачать

    МЕТОД ИНТЕРВАЛОВ с Нуля + ДЗ (Задания 15 ЕГЭ 2024 по Математике Профиль)

    Как решать неравенства? Часть 1| МатематикаСкачать

    Как решать неравенства? Часть 1| Математика

    ОГЭ-2023 // Система неравенств за минутуСкачать

    ОГЭ-2023 // Система неравенств за минуту

    Квадратные неравенства Как решать неравенства методом интервалов?Скачать

    Квадратные неравенства Как решать неравенства методом интервалов?

    ✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

    ✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин
  • Поделиться или сохранить к себе: