Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

2. 5. Комбинированный метод хорд и касательных

Методы хорд и касательных дают приближения корня с разных сторон. Поэтому их часто применяют в сочетании друг с другом, тогда уточнение корня происходит быстрее.

Пусть дано уравнение f ( x ) = 0, корень отделен на отрезке [ a , b ].

Рассмотрим случай, когда f ‘( x ) f ’’( x )>0 (рис. 2.13).

Решение уравнений методом хорд касательных комбинированный

В этом случае метод хорд дает приближенное значение корня с недостатком (конец b неподвижен), а метод касательных – с избытком (за начальное приближение берем точку b ).

Тогда вычисления следует проводить по формулам:

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Теперь корень ξ заключен в интервале [ a 1, b 1]. Применяя к этому отрезку комбинированный метод, получим:

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Если же f ‘( x ) f ’’( x )

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Решение уравнений методом хорд касательных комбинированный

Вычислительный процесс прекращается, как только выполнится условие:

Видео:Численное решение уравнений, урок 5/5. Комбинированный метод хорд и касательныхСкачать

Численное решение уравнений, урок 5/5. Комбинированный метод хорд и касательных

Электронная библиотека

Метод Ньютона называют также методом касательных. Комбинируя метод хорд и метод Ньютона, можно построить метод отыскания вещественных корней уравнения f(x) = 0, в котором при прежних предположениях относительно f(x) на каждом шаге итерационного процесса мы получаем два приближения к корню и , причем где с –точное значение корня.

1. Условия на применение метода те же, что и в методе Ньютона.

Пусть известен отрезок [a, b], который содержит один корень уравнения: f(x) = 0. Функция f(x) является дважды непрерывно дифференцируемой на [a, b] (f(x) Î C 2 [a, b]). Функция f принимает на концах отрезка [a, b] значения разных знаков (f(a)×f(b) 0, то слева применяем метод Ньютона, а справа метод хорд.

· если f(bf ¢¢(x) > 0, то слева применяем метод хорд, а справа метод Ньютона (метод касательных).

В качестве точек начального приближения выбираются: x0 = a, .

4. Условие остановки итерационного процесса: , при выполнении этого условия любая точка из отрезка [ ] приближает корень уравнения с точностью e.

Решение уравнений методом хорд касательных комбинированный

Чаще всего принимают: .

На рис. 2.8. иллюстрируется применение комбинированного ме­тода хорд и касательных. В рас­сматриваемом случае справа при­меняется метод Ньютона, а слева – метод хорд.

Рис. 2.8. Геометрический смысл комбинированного метода хорд и касательных

Построить алгоритм для уточнения корня уравнения x 3 + 3x – 1 = 0 комбинированным методом хорд и касательных с точностью e на отрезке [0.1, 1].

1. В предыдущих примерах мы проверили, что отрезок [0.1, 1] содержит один корень уравнения, и выполняются все условия для применения метода Ньютона:

2. Определим, какой из методов нужно применять слева, а какой справа:

Следовательно, слева применяем метод хорд, а справа – метод касательных (Ньютона). Запишем формулы:

3. Точки начального приближения:

4. Условие остановки итерационного процесса:

При выполнении условия остановки итерационного процесса х* является приближенным значением корня уравнения, полученным комбинированным методом хорд и касательных с точностью e.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Видео:Решение нелинейного уравнения комбинированным методом (хорд-касательных)Скачать

Решение нелинейного уравнения комбинированным методом (хорд-касательных)

Метод хорд и касательных (комбинированный)

НАХОЖДЕНИЕ ВСЕХ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ АЛГЕБРАИЧЕСКОГО МНОГОЧЛЕНА МЕТОДОМ ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ (БИСЕКЦИИ) И МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ С УКАЗАННОЙ ТОЧНОСТЬЮ И УЧЕТОМ ВОЗМОЖНОЙ КРАТНОСТИ КОРНЕЙ

АННОТАЦИЯ

В данной курсовой работе рассмотрен принцип нахождения корней алгебраического многочлена следующими численными методами: метод бисекции, метод хорд и касательных, метод разложения на множители с учетом определяемой точности и проверки кратности корней, а также в среде Visual Basic for Applications 6.0 была разработана программа, реализующая этот поиск и проверку. В пояснительной записке приводится описание как самих численных методов, так и программы, включая примеры и «экранные копии».

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Разработать программу для вычисления корней алгебраического многочлена следующими численными методами : методом половинного деления, методом хорд и касательных, методом разложения на множители, а также обеспечить вычисление значений корней с указываемой точностью и проверку кратности корней. Среда разработки программы – произвольная.

ПРЕДМЕТНАЯ ОБЛАСТЬ

Описание численных методов

Численные методы позволяют найти решения определенных задач, заранее зная, что полученные результаты будут вычислены с определенной погрешностью, поэтому для многих численных методов необходимо заранее знать «уровень точности», которому будет соответствовать полученное решение.

В этой связи задача нахождения корней многочлена вида (1)

представляет особый интерес, т.к. формулы нахождения корней даже кубического уравнения достаточно сложны, а если необходимо отыскать корни многочлена, степень которого равна, например, 5 – то без помощи численных методов не обойтись, тем боле, что вероятность наличия у такого многочлена натуральных (или целых, или точных корней с с «короткой» дробной частью) довольно мала, а формул для нахождения корней уравнения степени, превышающей 4, не существует.[1] Де-факто все дальнейшие операции будут сводиться лишь к уточнению корней, интервалы которых приблизительно известны заранее. Проще всего эти «приблизительные» корни находить, используя графические методы.

Для нахождения корней многочлена существует несколько численных методов, но мы остановимся на тех из них: методе итераций, методе хорд и касательных и методе половинного деления.

Метод хорд и касательных (комбинированный)

Данный метод основан на построении схематического графика функции, определении интервалов его пересечения с осью абсцисс и последующим «сжатием» этого интервала при помощи строимых хорд и касательных к графику этой функции.

Надо отметить, что существуют также отдельно метод хорд (дает значение корня с недостатком) и метод касательных (с избытком). Однако преимущество комбинированного метода заключается в «двустороннем сжатии» рассматриваемого отрезка.

Рассмотрим следующий случай:

дана функция F(x) и построен ее график;

определена допустимая погрешность Q

Решение уравнений методом хорд касательных комбинированный

на основании графика определен отрезок [a,b], на котром график функции пересекает ось абсцисс, следовательно, на этом отрезке

существует корень рассматриваемого многочлена. (обозначим его через A)

Дальнейший алгоритм сводится к следующим действиям:

строим касательную к графику функции в точке F(b)

вычисляем координату х пересечения касательной с осью абсцисс по формуле (3) и обозначаем ее через b’

строим к графику функции хорду, проходящую через точки F(a) и F(b).

Вычисляем точку пересечения хорды с осью абсцисс по формуле (2) и обозначаем ее через a’.

a’=a- a , где Решение уравнений методом хорд касательных комбинированный(2)

Решение уравнений методом хорд касательных комбинированный

Таким образом мы получаем новый отрезок [a’ , b’], котроый (по определениям хорды и касательной) по-прежнему содержи решение уравнения A.

Теперь принимаем отрезок [a’,b’] за новый отрезок [a,b] и повторяем шаги 1-4 до тех пор, пока разность F(b)-F(a) не станет меньше первоначально заложенной погрешности Q. Отметим также, что после этого рекомендуется в качестве искомого решения взять среднее арифметическое F(a) и F(b).

Замечание к методу хорд и касательных. В рассмотренном случае производная F’(x)>0, т.е. график «выпуклый» и b>a. При работе с каждым отдельным случаем необходимо находить производные функции первого и второго порядков и, сообразуясь с ее знаком, определять a и b.

🌟 Видео

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)

Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

Метод хордСкачать

Метод хорд

1,2 Решение нелинейных уравнений методом хордСкачать

1,2 Решение нелинейных уравнений методом хорд

Комбинированный метод приближенного нахождения корня уравненияСкачать

Комбинированный метод приближенного нахождения корня уравнения

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

Метод Ньютона (касательных) и хорд Численное решение уравнения c++Скачать

Метод Ньютона (касательных) и хорд  Численное решение уравнения c++

Метод Хорд - ВизуализацияСкачать

Метод Хорд - Визуализация

Решение нелинейного уравнения методом хордСкачать

Решение нелинейного уравнения методом хорд

Численный метод Ньютона в ExcelСкачать

Численный метод Ньютона в Excel

Метод касательных для приближённого решения алгебраических уравненийСкачать

Метод касательных для приближённого решения алгебраических уравнений

Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Решение нелинейных уравнений методом хордСкачать

Решение нелинейных уравнений методом хорд

Метод Ньютона (Метод касательных)Скачать

Метод Ньютона (Метод касательных)

Метод хорд для приближённого решения алгебраических уравненийСкачать

Метод хорд для приближённого решения алгебраических уравнений

Метод хорд для выпуклой функцииСкачать

Метод хорд для выпуклой функции

Алгоритмы. Нахождение корней уравнения методом хордСкачать

Алгоритмы. Нахождение корней уравнения методом хорд
Поделиться или сохранить к себе: