Здесь мы рассматриваем решение кубических уравнений вида
(1) .
Далее считаем, что – это действительные числа.
Если исходное уравнение имеет вид:
(2) ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.
Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и – это двукратные корни (или корни кратности 2), а – простой корень.
- Если известен один корень
- Если один из корней – целый
- Поиск рациональных корней
- Формулы Кардано и Виета для решения кубического уравнения
- Примеры решений по формулам Кардано и Виета
- Иррациональные уравнения с кубическими радикалами
- Решение кубических уравнений
- Решение двучленного кубического уравнения вида A x 3 + B = 0
- Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
- Решение кубических уравнений с рациональными корнями
- Решение кубических уравнений по формуле Кардано
- 📹 Видео
Видео:Решение уравнения третьей степени x³-9x-12=0Скачать
Если известен один корень
Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .
Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.
Примеры деления многочленов представлены на странице
“Деление и умножение многочлена на многочлен уголком и столбиком”.
Решение квадратных уравнений рассмотрено на странице
“Корни квадратного уравнения”.
Если один из корней – целый
Если исходное уравнение имеет вид:
(2) ,
и его коэффициенты , , , – целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.
Поиск рациональных корней
Если в уравнении (2) , , , – целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и – целые.
Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3) .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .
Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.
Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Формулы Кардано и Виета для решения кубического уравнения
Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.
Рассмотрим кубическое уравнение:
(1) .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4) ,
где
(5) ; .
Формула Кардано для неполного (приведенного) кубического уравнения имеет вид:
;
;
;
;
.
По формуле Кардано, мы находим три корня величины . Затем, используя формулу , находим значения величины .
После разделения кубических корней величины , формула Кардано принимает следующий вид:
(6) , ,
где
(7) ; ; ;
(8) .
При , для и нужно выбирать действительные корни, которые автоматически связаны соотношением . При этом мы получим одно действительное решение и два комплексно сопряженных и .
При имеем:
; ; .
В этом случае мы имеем два кратных действительных корня. Если , то мы имеем три кратных корня.
При мы имеем три действительных корня. При этом и – комплексные. Поэтому решение приводится к тригонометрической форме, которая имеет название формулы Виета:
(9) ;
(10) ,
где
(11) ; .
Примеры решений по формулам Кардано и Виета
Решить кубические уравнения:
;
.
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.
Автор: Олег Одинцов . Опубликовано: 30-04-2016 Изменено: 02-10-2016
Видео:Математика | Кубические уравнения по методу СталлонеСкачать
Иррациональные уравнения с кубическими радикалами
Разделы: Математика
Тема: «Иррациональные уравнения вида , .»
(Методическая разработка.)
Основные понятия
Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.
Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.
Основные свойства радикалов:
- Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
- Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.
Методы решения иррациональных уравнений
Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.
Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.
Основными методами решения иррациональных уравнений являются:
а) метод возведения обеих частей уравнения в одну и ту же степень;
б) метод введения новых переменных (метод замен);
в) искусственные приемы решения иррациональных уравнений.
В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.
1 метод. Возведение в куб.
Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.
Пример 1. Решить уравнение
Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,
,
,
Пример 2. Решить уравнение .
Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению
,
,
,
и рассмотрим полученное уравнение как квадратное относительно одного из корней
,
,
следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.
Проверка:
Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.
2 метод. Возведение в куб по формуле.
По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.
,
(незначительная модификация известной формулы), тогда
Пример3. Решить уравнение .
Возведём уравнение в куб с использованием формул, приведённых выше.
,
Но выражение должно быть равно правой части. Поэтому имеем:
, откуда
.
Теперь при возведении в куб получаем обычное квадратное уравнение:
, и два его корня
,
Оба значения, как показывает проверка, правильные.
Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.
Пример4. Решить уравнение .
Возводя, как и ранее, обе части в третью степень, имеем:
.
Откуда (учитывая, что выражение в скобках равно ), получаем:
, значит
. Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.
Ответ: .
Ответим на вопрос: «Почему возникли посторонние корни?»
Равенство влечёт равенство . Заменим с на –с, получим:
и .
Нетрудно проверить тождество
,
Итак, если , то либо , либо . Уравнение можно представить в виде , .
Заменяя с на –с, получаем: если , то либо , либо
Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.
3 метод. Метод системы.
Пример 5. Решить уравнение .
Введём замену, составим и решим систему уравнений.
Пусть , . Тогда:
откуда очевидно, что
Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.
Легко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.
Ответ: Корней нет.
Пример 6. Решить уравнение .
Введём замену, составим и решим систему уравнений.
Пусть , . Тогда
или
Возвращаясь к исходной переменной имеем:
х=0.
4 метод. Использование монотонности функций.
Прежде чем использовать данный метод обратимся к теории.
Нам понадобятся следующие свойства:
- Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
- Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
- Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
- Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
- Функция вида возрастает при к>0 и убывает при к 30.05.2009
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Решение кубических уравнений
Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Решение двучленного кубического уравнения вида A x 3 + B = 0
Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что
x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0
Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.
Найти корни кубического уравнения 2 x 3 — 3 = 0 .
Решение
Необходимо найти х из уравнения. Запишем:
2 x 3 — 3 = 0 x 3 — 3 2 = 0
Необходимо применить формулу сокращенного умножения. Тогда получим, что
x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0
Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.
Ответ: x = 3 3 2 6 .
Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать
Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что
A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A
Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.
Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .
Решение
Уравнение является возвратным. Необходимо произвести группировку. Получим, что
5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0
Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :
5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10
Ответ:
x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1
Видео:Решение уравнений третьей степени (формула Кардано)Скачать
Решение кубических уравнений с рациональными корнями
Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .
Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .
Решение
3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0
Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что
D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.
Ответ: х = 0 .
Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :
A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2
Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.
Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .
Решение
Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что
2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0
Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:
± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36
Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида
1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0
Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .
Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:
x i | Коэффициенты многочлена | |||
---|---|---|---|---|
2 | — 11 | 12 | 9 | |
— 0 . 5 | 2 | — 11 + 2 · ( — 0 . 5 ) = — 12 | 12 — 12 · ( — 0 . 5 ) = 18 | 9 + 18 · ( — 0 . 5 ) = 0 |
2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9
После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.
Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .
Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.
Видео:Формула Кардано. Решение уравнений третьей степени.Скачать
Решение кубических уравнений по формуле Кардано
Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .
После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .
Полученные p и q в формулу Кардано. Получим, что
y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3
Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.
Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .
Решение
Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .
Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .
Отсюда следует, что
p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108
Производим подстановку в формулу Кордано и получим
y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3
— 343 216 3 имеет три значения. Рассмотрим их ниже.
— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2
Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2
Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6
Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2
Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .
Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .
Преобразуем при помощи формулы Кордано:
y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6
x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3
Ответ: x 1 = — 1 2 , x 2 , 3 = 3
При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.
📹 Видео
Теорема Виета для многочлена 3 порядка. 10 класс.Скачать
ДВИ МГУ 2024 | Математика | Александр Нагорный в прямом эфире! Ботаем тригонометрию и параметры! 🔥🔥Скачать
Корень n-ой степени. Алгебра, 9 классСкачать
ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать
Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать
Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать
Решить уравнение. Третья степень и квадратный кореньСкачать
Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Корни n-й степени. Вебинар | МатематикаСкачать
Теорема БезуСкачать
11 класс, 3 урок, Уравнения высших степенейСкачать