Решение уравнений комплексных чисел с модулем

Решение уравнений комплексных чисел с модулем

Квадратный корень из комплексного числа

Корни четвертой и пятой степени

Возведение в степень

Мнимая и действительная часть

Можно использовать следующие функции от z (например, от z = 1 + 2.5j):

Правила ввода выражений и функций

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Видео:Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.

Где учитесь?

Для правильного составления решения, укажите:

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:

Решение уравнений комплексных чисел с модулем
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .

Пример 1. Найти все корни уравнения

Решение уравнений комплексных чисел с модулем

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Решение уравнений комплексных чисел с модулем

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:

Решение уравнений комплексных чисел с модулемРешение уравнений комплексных чисел с модулем
Подставим найденные значения в формулу:

Решение уравнений комплексных чисел с модулем

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Решение уравнений комплексных чисел с модулем

Пример 2. Найти все корни уравнения

Решение уравнений комплексных чисел с модулем

Найдем дискриминант уравнения:

Решение уравнений комплексных чисел с модулем
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Решение уравнений комплексных чисел с модулем

Найдем корни уравнения:

Решение уравнений комплексных чисел с модулем
Ответ:

Решение уравнений комплексных чисел с модулем

Пример 3. Найти все корни уравнения

Решение уравнений комплексных чисел с модулем

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Решение уравнений комплексных чисел с модулем

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:

Решение уравнений комплексных чисел с модулем

Подставим найденные значения в формулу:

Решение уравнений комплексных чисел с модулем

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Решение уравнений комплексных чисел с модулем

Решение уравнений комплексных чисел с модулем

Пример 4. Найти корни уравнения

Решение уравнений комплексных чисел с модулем
Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:

Решение уравнений комплексных чисел с модулем
Подставим найденные значения в формулу:

Решение уравнений комплексных чисел с модулем

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Решение уравнений комплексных чисел с модулем

Решение уравнений комплексных чисел с модулем

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Модуль числа знак, свойства, действия, как найти, примеры графиков

Решение уравнений комплексных чисел с модулем

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам.

Видео:2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числаСкачать

2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числа

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Решение уравнений комплексных чисел с модулем

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Свойства модуля

Важно помнить о следующих свойствах:

  1. Правило раскрытия: абсолютная величина любого числа больше или равна нулю: Решение уравнений комплексных чисел с модулем
  2. Если абсолютные значения содержат выражения противоположных значений, они равны: Решение уравнений комплексных чисел с модулем
  3. Значение числа не превышает величину его модуля: Решение уравнений комплексных чисел с модулем
  4. Правило раскрытия при произведении: Решение уравнений комплексных чисел с модулем
  5. Правило, применимое при делении: Решение уравнений комплексных чисел с модулем
  6. При возведении в степень: Решение уравнений комплексных чисел с модулем
  7. Сумма величин: Решение уравнений комплексных чисел с модулем
  8. Двойной модуль: Решение уравнений комплексных чисел с модулем

Видео:Комплексные числа: начало. Высшая математика или школа?Скачать

Комплексные числа: начало. Высшая математика или школа?

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Решение уравнений комплексных чисел с модулем

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi, поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi.

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a, потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| &lt, a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Далее простая арифметика − нужно решить два равенства относительно x.

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение уравнений комплексных чисел с модулем

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2.

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2.

Ответ: 2 и −2.

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0. Получено: x = –2.

Это означает, что –2 – поворотная точка.

Далее определяется знак на интервалах: на промежутке величина будет отрицательной, а на интервале будет положительной.

Разделим интервал на 2 части:

Решение уравнений комплексных чисел с модулем

Общим ответом для этих двух неравенств является интервал [−1, + ∞).

Решение уравнений комплексных чисел с модулем

Общим ответом для этих двух неравенств является интервал (−∞, –3].

Окончательное решение – объединение ответов отдельных частей:

Ответ: x ∈ (–∞, –3] ∪ [–1, + ∞).

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Решение уравнений комплексных чисел с модулем

Ответ: x1 = 3, x2 = − 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение уравнений комплексных чисел с модулем

Решение:

Решение уравнений комплексных чисел с модулем

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение уравнений комплексных чисел с модулем

Решение:

Решение уравнений комплексных чисел с модулем

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке .

Ответ: x = 0.

Видео:Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Модуль суммы

Решение уравнений комплексных чисел с модулем

Видео:Решение уравнений с комплексными числамиСкачать

Решение уравнений с комплексными числами

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Решение уравнений комплексных чисел с модулем

Пример 2.

Решение уравнений комплексных чисел с модулем

Видео:10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать

10 класс, 35 урок, Комплексные числа и квадратные уравнения

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Решение уравнений комплексных чисел с модулем

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Модуль нуля

Решение уравнений комплексных чисел с модулем

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Видео:Уравнение с модулемСкачать

Уравнение с модулем

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Решение уравнений комплексных чисел с модулем

Видео:Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Решение уравнений комплексных чисел с модулем

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Решение уравнений комплексных чисел с модулем

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Видео:Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1. Решить методом интервалов.

Решение уравнений комплексных чисел с модулем

Решение:

Решение уравнений комплексных чисел с модулем

Решение уравнений комплексных чисел с модулем

Результатом будет сумма всех подходящих интервалов.

Решение уравнений комплексных чисел с модулем

Видео:Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Модуль в модуле

Среди примеров часто встречаются уравнения, где нужно найти корни равенств такого вида: ||ax – b| – c| = kx + m.

Лучше всего понять принцип на примере.

Пример 1. Решить

Решение уравнений комплексных чисел с модулем

Решение:

Первым делом нужно раскрыть внутренний модуль. Для этого рассматривается два варианта:

Решение уравнений комплексных чисел с модулем

В первом случае выражение положительное, а во втором отрицательное. Исходя из этого, получаем:

Решение уравнений комплексных чисел с модулем

Нужно упростить два уравнения:

Решение уравнений комплексных чисел с модулем

Далее каждое из равенств разделяется еще на два:

Решение уравнений комплексных чисел с модулем

Получено четыре результата:

Решение уравнений комплексных чисел с модулем

Решение уравнений комплексных чисел с модулем

Видео:Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Заключение

Самое важное, что нужно знать: модуль не может быть отрицательным.

Поэтому, если представлено выражение, похожее на |2 – 4x| = –7 стоит помнить, что равенство неверно даже без поисков ответов.

В качестве итогов, напомним все свойства, которые помогут в решении задач:

  • когда положительное число находится внутри модуля, достаточно просто избавиться от него,
  • если есть выражение, нужно его упростить, прежде чем найти абсолютное значение,
  • если равенство содержит две переменные, нужно решать его с помощью системы уравнений и за основу брать методы решения выражений с абсолютными величинами.

Решать равенства и неравенства можно разными способами, но лучше всего использовать графический способ или метод интервалов.

📺 Видео

Комплексные числа. Сложение, умножение, деление, модуль комплексного числаСкачать

Комплексные числа. Сложение, умножение, деление, модуль комплексного числа

Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Модуль комплексного числаСкачать

Модуль комплексного числа
Поделиться или сохранить к себе: