Решение уравнений коэффициенты десятичные дроби

Решение десятичных уравнений по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Линейное уравнение с десятичными дробями решается точно так же, как и множество других уравнений, однако их решение нужно начинать с сокращения уравнения и избавления от десятичных дробей.

Решение уравнений коэффициенты десятичные дроби

Допустим, дано уравнение следующего вида:

[2,4(6 — 3x) + 4,3 = 1,7 — 5,2x]

Данное уравнение можно решить двумя разными способами.

Решение начинаем с упрощения уравнения с помощью открытия скобок, а поскольку перед скобками у нас стоит число, то умножаем это число на каждый член в скобках:

[14,4 — 7,2x + 4,3 = 1,7 — 5,2x]

Сейчас наше уравнение имеет линейный вид, благодаря чему мы производим перенос неизвестных в одну сторону, целый числе в другую:

[ — 7,2x + 5,2x = 1,7 — 14,4 — 4,3]

Делим 2 части на число перед [x :]

В этом способе умножим левую и правую части на 10:

[2,4(6 — 3x) + 4,3 = 1,7 — 5,2x]

[24(6 — 3x) + 43 = 17 — 52x]

Это линейное уравнение, которое решается по аналогии с 1 способом:

[144 — 72x + 43 = 17 — 52x]

[ — 72x + 52x = 17 — 144 — 43]

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Где можно решить десятичные уравнения онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто вdести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.

Решение уравнений с дробями

Решение уравнений коэффициенты десятичные дроби

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Уравнения с десятичными дробями. Математика 5 классСкачать

Уравнения с десятичными дробями. Математика 5 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Решение уравнений с дробными числами в 6 классеСкачать

Решение уравнений с дробными числами в 6 классе

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Решение уравнений коэффициенты десятичные дроби Решение уравнений коэффициенты десятичные дроби

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Решение уравнений коэффициенты десятичные дроби Решение уравнений коэффициенты десятичные дроби

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Решение уравнений коэффициенты десятичные дроби

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Решение уравнений коэффициенты десятичные дроби

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Решение уравнений коэффициенты десятичные дроби

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Решение уравнений коэффициенты десятичные дроби

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Решение уравнений коэффициенты десятичные дроби

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияРешение уравнений коэффициенты десятичные дроби

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решение уравнений коэффициенты десятичные дроби

Переведем новый множитель в числитель..

Решение уравнений коэффициенты десятичные дроби

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Решение уравнений коэффициенты десятичные дроби

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

    Уравнения с дробями. Алгебра 7 класс.

    Решить уравнение с дробями онлайн

    При помощи калькулятора можно решать уравнение с дробями. Для этого просто введите заданные дроби и быстро получите результат. Калькулятор простой в использовании и выдаёт только точный ответ.

    Видео:Раскрытие скобок. 6 класс.Скачать

    Раскрытие скобок. 6 класс.

    Калькулятор

    Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

    Инструкция

    Примечание: π записывается как pi; корень квадратный как sqrt().

    Шаг 1. Введите заданный пример, состоящий из дробей.

    Шаг 2. Нажмите кнопку “Решить”.

    Шаг 3. Получите подробный результат.

    Чтобы калькулятор посчитал дроби правильно, вводите дробь через знак: “/”. Например: Решение уравнений коэффициенты десятичные дроби. Калькулятор посчитает уравнение и даже покажет на графике, почему получился такой результат.

    Видео:ДЕСЯТИЧНАЯ ДРОБЬ | сложение десятичных дробей | вычитание десятичных дробейСкачать

    ДЕСЯТИЧНАЯ ДРОБЬ | сложение десятичных дробей | вычитание десятичных дробей

    Что такое уравнение с дробями

    Уравнение с дробями – это уравнение, в котором коэффициенты являются дробными числами. Линейные уравнения с дробями решается по стандартной схеме: неизвестные переносятся в одну сторону, а известные – в другую.

    Рассмотрим на примере:

    Решение уравнений коэффициенты десятичные дроби

    Дроби с неизвестными переносятся влево, а остальные дроби – вправо. Когда переносятся числа за знак равенства, тогда у чисел знак меняется на противоположный:

    Решение уравнений коэффициенты десятичные дроби

    Решение уравнений коэффициенты десятичные дроби

    Теперь нужно выполнить только действия обеих частей равенства:

    Решение уравнений коэффициенты десятичные дроби.

    Получилось обыкновенное линейное уравнение. Теперь нужно поделить левую и правую части на коэффициент при переменной.

    Средняя оценка 2.5 / 5. Количество оценок: 66

    🔍 Видео

    Как решать уравнения с десятичными дробями - математика 5 классСкачать

    Как решать уравнения с десятичными дробями - математика 5 класс

    Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

    Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Перевод бесконечной периодической десятичной дроби в обыкновенную дробь. 6 класс.Скачать

    Перевод бесконечной периодической десятичной дроби в обыкновенную дробь. 6 класс.

    Все действия с десятичными дробями (Сложение, вычитание, деление и умножение)Скачать

    Все действия с десятичными дробями (Сложение, вычитание, деление и умножение)

    Деление числа на десятичную дробь. Математика 5 класс.Скачать

    Деление числа на десятичную дробь. Математика 5 класс.

    Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс
    Поделиться или сохранить к себе: