Автор: Толмачева Надежда Алексеевна.
- Стереометрия на ЕГЭ
- Экспресс-курсы по подготовке к ЕГЭ
- Словарь архаизмов и историзмов по пьесам М.Горького
- Задание №7 ЕГЭ по математике базового уровня
- Простейшие уравнения
- Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня
- Вариант 7МБ1
- Вариант 7МБ2
- Вариант 7МБ3
- Вариант 7МБ4
- Вариант 7МБ5
- Вариант 7МБ6
- Вариант 7МБ7
- Вариант 7МБ8
- Вариант 7МБ9
- Вариант 7МБ10
- Вариант 7МБ11
- Вариант 7МБ12
- Вариант 7МБ13
- Вариант 7МБ14
- Вариант 7МБ15
- Вариант 7МБ16
- Репетитор по математике
- Стоимость занятий
- Видеокурсы подготовки к ЕГЭ-2021
- Группа Вконтакте
- Преимущества
- Педагогический стаж
- Собственная методика
- Гарантированный результат
- Индивидуальная работа
- 🔥 Видео
Видео:ЕГЭ База: задание 17 | ЕГЭ просто | Простейшие уравненияСкачать
Стереометрия на ЕГЭ
Цикл уроков для подготовки к заданию 13 профильного ЕГЭ по математике.
Видео:Решаем ВСЕ уравнения из сборника Ященко | Parta 2023 | Базовая математикаСкачать
Экспресс-курсы по подготовке к ЕГЭ
Пущинский государственный естественно-научный институт проводит бесплатные экспресс-курсы с 1 марта по 25 апреля 2022 года для выпускников 11 классов.
Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать
Словарь архаизмов и историзмов по пьесам М.Горького
Пьесы: «Мещане», «На дне», «Враги», «Егор Булычов и другие».
Видео:ВСЕ виды уравнений. Задание 5Скачать
Задание №7 ЕГЭ по математике базового уровня
Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать
Простейшие уравнения
В задании №7 базового уровня ЕГЭ по математике необходимо решить
Простейшие (Protozoa) — тип одноклеточных животных.
Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня
Вариант 7МБ1
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81
После преобразования выражение примет
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
x 2 + 6x + 9 = x 2 – 18x + 81
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 6x – x 2 + 18x = 81 – 9
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x
Выражение примет вид:
Преобразуем правую часть. 81 – 9 = 72
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ2
Алгоритм выполнения
- Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
- Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
- Преобразовать левую часть.
- Преобразовать правую часть.
- Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:
Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.
(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4
Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.
(x – 8) 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64
После преобразования выражение примет вид:
x 2 + 4x + 4 = x 2 – 16x + 64
Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.
x 2 + 4x – x 2 + 16x = 64 – 4
Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.
x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x
Выражение примет вид:
Преобразуем правую часть. 64 – 4 = 60
Выражение примет вид:
Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
Решение в общем виде:
Вариант 7МБ3
Алгоритм выполнения
- Перенести вычитаемое в правую сторону равенства с противоположным знаком.
- Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
- Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
- Решить уравнение относительно x.
Решение:
Вариант 7МБ4
Найдите корень уравнения 3 x− 3 = 81.
Алгоритм выполнения
- Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
- Когда основания равны, можно приравнять значения степеней
Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.
Значит, 81 это три в четвертой степени. Запишем это:
Решение:
Ответ: 7
Вариант 7МБ5
Найдите корень уравнения log2( x − 3) = 6 .
Алгоритм выполнения
- Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:
Вариант 7МБ6
Найдите отрицательный корень уравнения x 2 − x − 6 = 0.
Алгоритм выполнения
- Вычислить дискриминант
- Найти корни
- Выбрать необходимый корень
Решение:
D = -(1) 2 − 4 • 1 • (-6) = 25
Так как нам необходим отрицательный корень – ответ -2
Вариант 7МБ7
Решите уравнение х 2 = –2х + 24.
Если уравнение имеет больше одного
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Алгоритм выполнения
- Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
- Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
- Записываем в качестве ответа большее из полученных 2 чисел.
Решение:
Поскольку требуется указать больший из корней, то ответом будет 4.
Вариант 7МБ8
Найдите корни уравнения 4 х–6 = 64.
Алгоритм выполнения
- Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
- Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
- Находим корень ур-ния.
Решение:
Вариант 7МБ9
Найдите корень уравнения log3 (2x – 5) = 2.
Алгоритм выполнения
- Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
- Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ10
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
- Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ11
Найдите корень уравнения (х – 8) 2 = (х – 2) 2 .
Алгоритм выполнения
- Раскрываем скобки слева и справа, используя ф-
Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).
Решение:
х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2
Вариант 7МБ12
Найдите корень уравнения
Алгоритм выполнения
- Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
- Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
- Решаем его.
Решение:
Вариант 7МБ13
Решите уравнение х 2 – 25 = 0
Алгоритм выполнения
- Переносим 25 в правую часть ур-ния.
- Выражаем из ур-ния х путем извлечения корня из 25.
- Определяем корни, сравниваем их, определяем больший.
Решение:
Для ответа берем 5.
Вариант 7МБ14
Найдите корень уравнения
Алгоритм выполнения
- Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
- Решаем полученное линейное ур-ние.
Решение:
Вариант 7МБ15
Найдите корень уравнения
Алгоритм выполнения
- Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
- Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
- Решаем его.
Решение:
Вариант 7МБ16
Найдите корень уравнения
Видео:Решение варианта №13 Ященко по профильной математике 2024 | Подготовка к ЕГЭ с нуляСкачать
Репетитор по математике
Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».
Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]
Стоимость занятий
Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.
Видеокурсы подготовки к ЕГЭ-2021
Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.
Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.
Видео:ЛОГАРИФМЫ с нуля за 25 минут | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать
Группа Вконтакте
В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Преимущества
Педагогический стаж
Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.
Собственная методика
За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.
Гарантированный результат
За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.
Индивидуальная работа
Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.
🔥 Видео
ВСЕ ТИПЫ заданий №16 на ЕГЭ | Базовая математика ЕГЭ 2023 | УмскулСкачать
Как решить ЕГЭ по математике (база): 7, 16, 17 задания | Решу ЕГЭ за 10 минутСкачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Простейшие уравнения ЕГЭ 2024/ Все типы задания №17 ЕГЭ БАЗАСкачать
КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать
Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Решение логарифмических уравнений #shortsСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать