Решение уравнений численными методами в ms excel

1 Численный метод решения нелинейных уравнений
Содержание
  1. 1.1 Область локализации корней
  2. 1.2 Критерии сходимости при решении уравнений
  3. 1.3 Метод половинного деления (метод дихотомии)
  4. Пример решения уравнения методом дихотомии
  5. 2 Решение уравнений , используя “Подбор параметра ”
  6. 2.1 Пример решения уравнения, используя “Подбор параметра”
  7. 3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения”
  8. 3.1 Пример решения уравнения, используя надстройку “Поиск решения”
  9. Задание 1. Решение уравнений численным методом
  10. Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения”
  11. Численные методы решения алгебраических и трансцендентных уравнений в среде Microsoft Excel
  12. 1. Актуализация знаний
  13. Практическое задание «Решение алгебраических и трансцендентных уравнений в среде Microsoft Excel»
  14. Индивидуальное расчетное задание
  15. Задания для студентов первой группы
  16. Задания для студентов второй группы
  17. Задания для студентов третьей группы
  18. Задания для студентов четвертой группы
  19. Задания для студентов пятой группы
  20. Решение уравнений численными методами в ms excel
  21. 🔍 Видео

Видео:Численный метод Ньютона в ExcelСкачать

Численный метод Ньютона в Excel

1.1 Область локализации корней

В общем виде любое уравнение одной переменной принято записывать так Решение уравнений численными методами в ms excel , при этом корнем (решением) называется такое значение x*, что Решение уравнений численными методами в ms excel оказывается верным тождеством. Уравнение может иметь один, несколько (включая бесконечное число) или ни одного корня. Как легко видеть, для действительных корней задача отыскания решения уравнения легко интерпретируется графически: корень есть такое значение независимой переменной, при котором происходит пересечение графика функции, стоящей в левой части уравнения f ( x ), с осью абсцисс.

Например , для уравнения Решение уравнений численными методами в ms excel выполним преобразование и приведем его к виду f(x)= 0 т.е. Решение уравнений численными методами в ms excel . График этой функции представлен на рисунке 1. Очевидно, что данное уравнение имеет два действительных корня – один на отрезке [-1, 0] , а второй – [1, 2].

Решение уравнений численными методами в ms excel

Рисунок 1. График функции Решение уравнений численными методами в ms excel

Таким образом, можно приблизительно определять область локализации корней уравнения. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.

Некоторые виды уравнений допускают аналитическое решение. Например, степенные алгебраические уравнения степени n Решение уравнений численными методами в ms excel при n ≤ 4. Однако, в общем виде, аналитическое решение, как правило, отсутствует. В этом случае, применяются численные методы. Все численные методы решения уравнений представляют собой итерационные алгоритмы последовательного приближения к корню уравнения. То есть, выбирается начальное приближение к корню x 0 и затем с помощью итерационной формулы генерируется последовательность x 1, x 2, …, xk сходящаяся к корню уравнения Решение уравнений численными методами в ms excel .

Видео:Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

1.2 Критерии сходимости при решении уравнений

Ø Абсолютная погрешность — абсолютное изменение приближения на соседних шагах итерации Решение уравнений численными методами в ms excel

Ø Относительная погрешность — относительное изменение приближения на соседних шагах итерации Решение уравнений численными методами в ms excel

Ø Близость к нулю вычисленного значения левой части уравнения (иногда это значение называют невязкой уравнения, так как для корня невязка равна нулю) Решение уравнений численными методами в ms excel

Видео:Численное решение уравнений, урок 3/5. Метод хордСкачать

Численное решение уравнений, урок 3/5. Метод хорд

1.3 Метод половинного деления (метод дихотомии)

Метод половинного деления основан на последовательном делении отрезка локализации корня пополам.

Для этого выбирается начальное приближение к отрезку [ a , b ], такое, что f ( a ) × f ( b ) Решение уравнений численными методами в ms excel — середине отрезка [ a , b ]. Если он противоположен знаку функции в точке a, то корень локализован на отрезке [ a , c ], если же нет – то на отрезке [ c , b ]. Схема метода дихотомии приведен на рис у нке 2.

Решение уравнений численными методами в ms excel

Рисунок 2. Последовательное деление отрезка пополам и приближение к корню Решение уравнений численными методами в ms excel

Алгоритм метода дихотомии можно записать так:

1. представить решаемое уравнение в виде Решение уравнений численными методами в ms excel

2. выбрать a, b и вычислить Решение уравнений численными методами в ms excel

3. если f(a) × f( с ) то a=a; b = c иначе a = c; b=b

4. если критерий сходимости не выполнен, то перейти к п. 2

Видео:Решение системы уравнений в ExcelСкачать

Решение системы уравнений в Excel

Пример решения уравнения методом дихотомии

Найти решение заданного уравнения методом дихотомии с точностью до 10 -5 .

Пример создания расчетной схемы на основе метода дихотомии на примере уравнения: Решение уравнений численными методами в ms excelна отрезке [1, 2]

Данный метод заключается в проверке на каждой итерации условия:

если f ( a ) × f (с) Решение уравнений численными методами в ms excel и выбор соответствующего отрезка для следующей итерации.

Решение уравнений численными методами в ms excel

Решение уравнений численными методами в ms excel

Рисунок 3. Последовательность итераций метода дихотомии при поиске корня уравнения Решение уравнений численными методами в ms excelна отрезке [1, 2]

a ) схема расчета (зависимые ячейки); b) режим отображения формул;

Для нашего примера итерационная последовательность для нахождения решения принимает вид:

Решение уравнений численными методами в ms excel

Точность до пятой значащей цифры достигается за 20 итераций.

Скорость сходимости этого метода является линейной.

При выполнении начального условия он сходится к решению всегда.

Метод половинного деления удобен при решении физически реальных уравнений, когда заранее известен отрезок локализации решения уравнения.

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

2 Решение уравнений , используя “Подбор параметра ”

Используя возможности Excel можно находить корни нелинейного уравнения вида f(x)=0 в допустимой области определения переменной. Последовательность операций нахождения корней следующая:

1. Производится табулирование функции в диапазоне вероятного существования корней;

2. По таблице фиксируются ближайшие приближения к значениям корней;

3. Используя средство Excel Подбор параметра, вычисляются корни уравнения с заданной точностью.

При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются в меню Сервис/Параметры/вкладка Вычисления. Если Excel выполняет сложную задачу подбора параметра, можно нажать кнопку Пауза в окне диалога Результат подбора параметра и прервать вычисление, а затем нажать кнопку Шаг, чтобы выполнить очередную итерацию и просмотреть результат. При решении задачи в пошаговом режиме появляется кнопка П родолжить — для возврата в обычный режим подбора параметра.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

2.1 Пример решения уравнения, используя “Подбор параметра”

Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3].

Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3; 3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня.

Решение уравнений численными методами в ms excel

Решение уравнений численными методами в ms excel

Рисунок 4. Поиск приближенных значений корней уравнения

Выполните команду меню Сервис/Параметры, во вкладке Вычисления установите относительную погрешность вычислений E=0,00001, а число итераций N=1000, установите флажок Итерации.

Выполните команду меню Сервис/Подбор параметра. В диалоговом окне (рисунок 9) заполните следующие поля:

þ Установить в ячейке : в поле указывается адрес ячейки, в которой записана формула правой части функции;

þ Значение : в поле указывается значение, которое должен получить полином в результате вычислений, т.е. правая часть уравнения (в нашем случае 0);

þ Изменяя значение : в поле указывается адрес ячейки (где записано начальное приближение), в которой будет вычисляться корень уравнения и на которую ссылается формула.

Решение уравнений численными методами в ms excel

Рисунок 5. Диалоговое окно Подбор параметра для поиска первого корня

После щелчка на ОК получим значение первого корня -1,65793685 .

Выполняя последовательно операции аналогичные предыдущим, вычислим значения остальных корней: -0,35913476 и 2,05170101 .

Видео:Численные методы решения интегралов в MS ExcelСкачать

Численные методы решения интегралов в  MS Excel

3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения”

Для решения уравнений можно также использовать команду Поиск решения, доступ к которой реализуется через пункт меню Сервис/Поиск решения.

Последовательность операций нахождения корней следующая:

1. Найти приближенное значение корня уравнения

2. Открыть диалог Поиск решения и установить следующие параметры (рисунок 10):

þ в поле У становить целевую ячейку ввести адрес ячейки, содержащей формулу (левую часть уравнения);

þ установить переключатель в положение ‘ значению’ и ввести значение 0 (правая часть уравнения);

þ в поле Изменяя ячейки ввести адреса изменяемых ячеек, т.е. аргумента x целевой функции,;

þ в поле Ограничения с помощью кнопки Д обавить ввести все ограничения, которым должен отвечать результат поиска (область поиска корня уравнения);

þ для запуска процесса поиска решения нажать кнопку В ыполнить.

þ Для сохранения полученного решения необходимо использовать переключатель С охранить найденное решение в открывшемся окне диалога Результаты поиска решения.

Решение уравнений численными методами в ms excel

Рисунок 6. Диалоговое окно Поиск решения

Полученное решение зависит от выбора начального приближения. Поиск начальных приближений рассмотрен выше.

Рассмотрим некоторые Опции, управляющие работой Поиска решения, задаваемые в окне Параметры (окно появляется, если нажать на кнопку Параметры окна Поиск решения):

þ Максимальное время — ограничивает время, отведенное на процесс поиска решения (по умолчанию задано 100 секунд, что достаточно для задач, имеющих около 10 ограничений, если задача большой размерности, то время необходимо увеличить).

þ Относительная погрешность — задает точность, с которой определяется соответствие ячейки целевому значению или приближение к указанным ограничениям (десятичная дробь от 0 до 1).

þ Неотрицательные значения — этим флажком можно задать ограничения на переменные, что позволит искать решения в положительной области значений, не задавая специальных ограничений на их нижнюю границу.

þ Показывать результаты итераций — этот флажок позволяет включить пошаговый процесс поиска, показывая на экране результаты каждой итерации.

þ Метод поиска — служит для выбора алгоритма оптимизации. Метод Ньютона был рассмотрен ранее. В Методе сопряженных градиентов запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и если итерации дают слишком малое отличие в последовательных приближениях.

Решение уравнений численными методами в ms excel

Рисунок 7. Вкладка Параметры окна Поиск решения

Видео:Метод ЭйлераСкачать

Метод Эйлера

3.1 Пример решения уравнения, используя надстройку “Поиск решения”

Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3]. Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3;3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня. На рисунке 12 представлен пример заполнения окна Поиск решения для нахождения первого корня на отрезке [-2; -1].

Решение уравнений численными методами в ms excel

Рисунок 8. Пример решения уравнения при помощи надстройки Поиск решения

Видео:Решение уравнений с помощью ExcelСкачать

Решение уравнений с помощью Excel

Задание 1. Решение уравнений численным методом

На листе 1 (название листа: Численные методы) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания ) реализовать итерационные расчетные схемы методов, указанных в Таблице 1 для нахождения хотя бы одного корня на заданном интервале. Количество итераций просчитать, оценивая Решение уравнений численными методами в ms excel , Решение уравнений численными методами в ms excel.

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения”

На листе 2 (название листа: Подбор Поиск) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания) на заданном интервале и с некоторым шагом (шаг выбрать самостоятельно) построить таблицу значений функции f(x) и определить количество корней уравнения и выделить интервалы, на которых находятся корни. Построить график функции. Уточнить на заданных интервалах с точностью до 10 -6 корни уравнения с помощью встроенных средств: Подбор параметра, Поиск решения

Видео:Численное решение уравнений, урок 1/5. Локализация корняСкачать

Численное решение уравнений, урок 1/5. Локализация корня

Численные методы решения алгебраических и трансцендентных уравнений в среде Microsoft Excel

Цель урока: Совершенствование умений и навыков по теме «Решение алгебраических и трансцендентных уравнений», применяя возможности MS Excel по решению алгебраических и трансцендентных уравнений. Отработать практическое освоение соответствующих умений и навыков.

Задачи урока:

  • Образовательные – совершенствование умений студентов при решении алгебраических и трансцендентных уравнений в среде электронных таблиц MS Excel. Выработать умение применять теоретические знания в практических расчетах;
  • Развивающие – познакомить студентов с применением компьютеров в качестве помощников при решении уравнений. Развивать у студентов математическую речь: создать ситуацию для применения основных понятий в речи; абстрактное мышление: создать ситуацию предъявления материала от общего к частному и от частного к общему, стимулировать самостоятельное обобщение материала сильными студентами;творческого мышления через создание условий для самореализации творческого потенциала обучающихся;
  • Воспитательные – выработать у студентов умение рационально использовать время и возможности компьютерных технологий при решении задач. Воспитывать интерес к предмету через ситуацию успеха и взаимодоверия;ответственность перед самим собой.

Тип урока: комбинированный урок.

Вид урока: практическое занятие, продолжительность – 2 часа.

Оборудование урока:

  • Компьютеры с OS MS Windows;
  • Программа Microsoft Excel;
  • Презентация по теме, выполненная в программе PowerPoint;
  • Карточки с заданиями для самостоятельной работы.

Структура урока:

1.1. Мобилизующее начало, постановка целей и задач на урок;

1.2.Фронтальный опрос с целью выявления основных этапов решения задач с использованием ЭВМ;

1.3. Постановка задачи с целью повторения алгоритма решения уравнения f(x)=0 на отрезке [а;в] различными методами;

1.4.Подведение итогов 1 этапа урока.

2.Применение знаний, формирование умений и навыков:

2.1.Беседа с целью формулировки задания для самостоятельной работы и инструктажа по ее организации;

2.2.Самостоятельная работа в группах по выполнению задания различными методами решения алгебраических и трансцендентных уравнений в среде Microsoft Excel.

2.3.Подведение итога урока.

В данном уроке особое внимание уделено визуальному представлению информации – в ходе урока с помощью проектора демонстрируются слайды, подготовленные в пакете презентационной графики Microsoft PowerPoint.

ХОД УРОКА

1. Актуализация знаний

Мобилизующее начало, постановка целей и задач на урок.

На прошлых уроках мы с вами рассмотрели алгебраические и трансцендентные уравнения, выделили методы их решения и решали данные уравнения ручным счетом. А на сегодняшнем занятии мы будем совершенствовать умения и навыки при решении алгебраических и трансцендентных уравнений в среде Microsoft Excel.

Поэтому нам необходимо вспомнить и повторить знания, которые потребуются на этом уроке. В чем заключается процесс решения задачи с использованием ЭВМ?

В общем случае процесс решения задачи с использованием ЭВМ состоит из следующих этапов:

  • 1.Постановка задачи и построение математической модели (этап моделирования);
  • 2.Выбор метода и разработка алгоритма (этап алгоритмизации);
  • 3.Запись алгоритма на языке, понятном ЭВМ (этап программирования);
  • 4.Отладка и использования программы на ЭВМ (этап реализации);
  • 5.Анализ полученных результатов (этап интерпретации).

— В чем заключается постановка задачи?

— Постановка задачи: Пусть дано уравнение f(x) = 0, (a, b) — интервал, на котором f(x) имеет единственный корень. Нужно приближенно вычислить этот корень с заданной точностью.

— В чем заключается общая постановка задачи?

— Общая постановка задачи. Найти действительные корни уравнения f(x) =0, где f(x) – алгебраическая или трансцендентная функция.

— Точные методы решения уравнений подходят только к узкому классу уравнений (квадратные, биквадратные, некоторые тригонометрические, показательные, логарифмические)

— В чем заключается задача численного нахождения корней уравнения?

— Задача численного нахождения корней уравнения состоит из двух этапов:

1. Отделение (локализация) корня;

2. Приближенное вычисление корня до заданной точности(уточнение корней)

— Какая задача называется уточнения корня?

-Уточнение корня. Если искомый корень уравнения f(x)=0, отделен, т.е. определен отрезок [a,b], на котором существует только один действительный корень уравнения, то далее необходимо найти приближенное значение коня с заданной точностью.

— Какими методами можно производить уточнения корня?

— Уточнения корня можно производить различными методами:

1) Метод половинного деления (бисекции);

2) Метод итераций;

3) Метод хорд (секущих);

4) Метод касательных (Ньютона);

5) Комбинированные методы.

— Объясните алгоритм решения уравнения f(x)=0 на отрезке [а;в] различными методами.

Применение знаний, формирование умений и навыков:

Видео:Метод Ньютона для решения нелинйеных уравнений в MS ExcelСкачать

Метод Ньютона для решения нелинйеных уравнений в MS Excel

Практическое задание «Решение алгебраических и трансцендентных уравнений в среде Microsoft Excel»

  • Ознакомиться с теоретической частью задания;
  • Провести расчет для своего варианта индивидуального задания в Microsoft Excel
  • Оформить презентацию в Ms PowerPoint, включающую:
    • постановку задачи;
    • алгоритм расчета;
    • таблицу с расчетом из Ms Excel, график исходной функции;
    • результат расчета и его анализ.

Индивидуальное расчетное задание

Дано: x 3 + 8x + 10 = 0

Найти: Отделить корень заданного уравнения, пользуясь графическим методом, и по методам вычислите один корень с точностью 0,001 при помощи программы на ПК

Графический метод: Для отделения корней уравнения естественно применять графический метод. График функции у = f (х) с учетом свойств функции дает много информации для определения числа корней уравнения f (х) = 0.

До настоящего времени графический метод предлага­лось применять для нахождения грубого значения корня или интервала, содержащего корень, затем применять итерационные методы, т.е. методы последовательных приближений для уточнения значения корня. С появлением математических пакетов и электронных таблиц стало возможным вычислять таблицы значений функции с любым шагом и строить графики с высокой точностью.

Это позволяет уточнять очередной знак в приближенном значении корня при помощи следующего алгоритма:

  • если функция f(x) на концах отрезка [а,b] значения разных принимает значения разных знаков то делим отрезок на 10 равных частей и находим ту часть, которая содержит корень (таким способом мы можем уменьшить длину отрезка, содержащего корень, в 10 раз);
  • повторим действия предыдущего пункта для полученного отрезка.

Этот процесс можно продолжать до тех пор, пока длина отрезка не станет меньше заданной погрешности.

Задания для студентов первой группы

  • Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001
  • Представьте графически поставленную задачу в среде Microsoft Excel;

Метод половинного деления:Постановка задачи: Пусть дано уравнение f(x) = 0, (a, b) — интервал, на котором f(x) имеет единственный корень. Нужно приближенно вычислить этот корень с заданной точностью.

Примечание: Заметим, что если f(x) имеет k корней, то нужно выделить соответственно k интервалов.

Метод половинного деления или дихотомии (дихотомия — сопоставленность или противопоставленность двух частей целого). Метод основан на той идее, что корень лежит либо на середине интервала (a, b), либо справа от середины, либо — слева, что следует из существования единственного корня на интервале (a, b).

Алгоритм для программной реализации:

  1. а:=левая граница b:= правая граница
  2. m:= (a+b)/2 середина
  3. определяем f(a) и f(m)
  4. если f(a)*f(m) e повторяем, начиная с пункта 2
  5. m — искомый корень.

Задания для студентов второй группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу половинного деления в среде Microsoft Excel.

Метод простой итерации: Смысл метода простой итерации состоит в том, что мы представляем уравнение f(x) в виде Решение уравнений численными методами в ms excel) и по формуле Решение уравнений численными методами в ms excelбудем строить итерации, которые сходятся к искомому корню с интересующей степенью точности, но тут есть проблемы: возможно f(x) очень сложно представить в таком виде, да и не факт, что любая Решение уравнений численными методами в ms excelбудет строить сходящиеся итерации, поэтому алгорим сводится к тому, чтобы оптимально найти Решение уравнений численными методами в ms excel.

Подготовка:

1. Ищем числа m и M такие, что Решение уравнений численными методами в ms excelна (a, b);

2. Представляем Решение уравнений численными методами в ms excel, где Решение уравнений численными методами в ms excel;

Алгоритм:

1. Выбираем х0 из (a, b);

2. Вычисляем Решение уравнений численными методами в ms excel;
3. Проверяем условие Решение уравнений численными методами в ms excel, где q=(M-m)/(M+m);

4. Если оно ложно, то переходим к пункту 7;

6. Переходим к пункту 2;

7. х1 – искомый корень.

Задания для студентов третьей группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001
  2. Расчет уравнения по методу простой итерации в среде Microsoft Excel.

Метод хорд: Метод хорд заключается в замене кривой у = f(x) отрезком прямой, проходящей через точки (а, f(a)) и (b, f(b)). Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение.

Чтобы получить расчетную формулу метода хорд, за­пишем уравнение прямой, проходящей через точки (a, f(a)) и (b, f(b)) и, приравнивая у к нулю, найдем х:

Решение уравнений численными методами в ms excel,

Алгоритм метода хорд:

2) Вычислим следующий номер итерации: k = k + 1.

Найдем очередное k-e приближение по формуле: xk = a — f(a)(b — a)/(f(b) — f(a)). Вычислим f(xk);

3) Если f(xk)= 0 (корень найден), то переходим к п. 5.

4) Если |xk – xk–1| > ε, то переходим к п. 2;

5) Выводим значение корня xk;

Задания для студентов четвертой группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу хорд в среде Microsoft Excel.
  3. Метод касательных: В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных: Решение уравнений численными методами в ms excel

Теорема. Пусть на отрезке [а, b]выполняются условия:

1) функция f(x)и ее производные f'(х)и f»(x) непрерывны;

2) производные f'(x) и f»(x)отличны от нуля и сохраняют определенные постоянные знаки;

3) f(a)× f(b) 0, то итерационная последовательность сходится монотонно

Задания для студентов пятой группы

  1. Найдите приближенное значение уравнения заданного функцией x 3 + 8x + 10 = 0, с точностью е=0,001.
  2. Расчет уравнения по методу касательных в среде Microsoft Excel.

Студенты выполняют задания в группах и показывают полученное решение у доски (один представитель от группы), делают выводы о проделанной работе.

В данном уроке мы познакомились с решением алгебраических и трансцендентных уравнений в среде Microsoft Excel.

Уточнения корня производилось различными методами:

1) методом бисекции;

2) методом итераций;

3) методом секущих;

4) методом Ньютона;

1. Самый простейший из методов уточнения корня является метод половинного деления и используется во многих стандартных программных средствах.

2. Метод хорд в отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения. Он требует , чтобы один конец отрезка, на котором ищется корень был не подвижен. Берется один из концов отрезка. Метод является двухточечным, его сходимость монотонная и односторонняя. Метод хорд использует пропорциональное деление интервала.

3. В методе касательных в отличие от методов дихотомии и хорд задается не начальный интервал местонахождения корня, а его начальное приближение .

4. У метода хорд и у метода Ньютона имеется общий недостаток: на каждом шаге проверяется точность значения.

Видео:Численное решение уравнений, урок 2/5. Метод деления отрезка пополамСкачать

Численное решение уравнений, урок 2/5. Метод деления отрезка пополам

Решение уравнений численными методами в ms excel

ВВЕДЕНИЕ

Современное развитие науки, техники и технологий тесно связано с использованием математических методов, программного обеспечения и мощных ЭВМ, ставшим рабочим инструментом учёного, инженера, конструктора. Все это позволяет строить и исследовать математические модели сложных устройств, систем и процессов, при этом резко сократить время и стоимость инженерных разработок.

Широкое использование ЭВМ способствовало развитию вычислительной математики (прикладной математики). Как и любая наука, вычислительная математика представляет собой сплав «классической» (теоретической) науки и прикладной науки, в роли последней выступает область вычислительных методов.

Практически все, что окружает современного человека – это все так или иначе связано с математикой. Последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в дальнейшем данная тенденция сохранится. Решение многих практических задач сводится к решению различных видов уравнений. При этом актуальным является использование ЭВМ и специального программного обеспечения при решении линейных и нелинейных уравнений и их систем.

Одна из основных целей изучения школьного курса математики заключается в овладении способами решения алгебраических и трансцендентных уравнений. В школьном курсе изучаются формулы корней квадратных уравнений, методы аналитического решения показательных, логарифмических и тригонометрических уравнений. При этом многие математические задачи, например, решение неравенств и их систем, нахождение области допустимых решений функции и т. п., включают в себя этап решения уравнений.

Цель работы: Освоение приемов численного решения алгебраических и трансцендентных уравнений в среде электронных таблиц MS Excel.

Задачи:

1) Ознакомиться с историей развития аналитических и численных методов решения уравнений.

2). Изучить особенности, достоинства и недостатки аналитических и численных методов.

3). Ознакомиться с вычислительными возможностями ЭТ MS Excel и изучить средства уточнения действительных корней нелинейных уравнений.

4) Освоить приемы отделения и уточнения действительных корней нелинейных уравнений в среде ЭТ MS Excel.

5) Решить задачи численного нахождения корней алгебраических и трансцендентных уравнений в среде электронных таблиц MS Excel.

Объект исследования: нелинейные уравнения с одной переменной.

Предмет исследования: возможности ЭТ MS Excel для численного решения нелинейные уравнения с одной переменной.

ОСНОВНАЯ ЧАСТЬ

1. Краткая история развития численных методов

Вычислительная математика начала свое развитие достаточно давно и в своем развитии прошла три этапа:

I. Первый этап начался 3-4 тысячи лет назад. Жители Вавилона в 2000 г. до н.э. уже умели решать квадратные уравнения и составлять таблицы для решения кубических уравнений путем приведения общего кубического многочлена к нормальному виду. В VII в. индийцы развили последовательную алгебраическую теорию уравнений первой и второй степени. Итальянский математик Ш. Ферро (1465-1526) нашел способ решения кубических уравнений специального вида [1]. Этот научный результат стал отправным пунктом для развития алгебры и математики вообще. Другим итальянским математиком, инженером, медиком и астрологом Дж. Кардано (1506-1576) было найдено решение приведенного кубического уравнения и опубликовано в 1545 г. в его научном труде «Великое искусство». В 1591 году великий французский математик Ф. Виет (1540-1603) впервые ввел символическое обозначение не только для неизвестных, но и для коэффициентов уравнений; указал на зависимость между корнями и коэффициентами уравнений (формулы Виета). Вычислительные средства этого этапа – палочки, пальцы, камешки и как вершина – счеты (абак).

II. Второй период начался с И. Ньютона (1642-1727). В этот период решались задачи астрономии, геодезии, баллистики и расчета механических конструкций, сводящиеся либо к обыкновенным дифференциальным уравнениям, либо к алгебраическим системам с большим числом неизвестных. В 1669 г. Ньютон предложил метод касательных для приближенного решения алгебраических уравнений, а в 1676 г. – способ приближенного вычисления определенных интегралов. Вычислительные средства – таблицы элементарных функций, арифмометры и логарифмические линейки.

III. Третий период начался примерно с 1940 года. Толчком к развитию прикладной математики послужили военные задачи, требующие высокой скорости решения задач. Появились электронные вычислительные машины. Например, Colossus («Колосс») – секретный британский компьютер, спроектированный и построенный в ходе Второй мировой войны в 1943 году для расшифровки перехваченных немецких радиосообщений, зашифрованных с помощью электронно-механического устройства «Энигма» (по-гречески – загадка). Спецификацию компьютера разработали английский математик, криптоаналитик профессор Макс Ньюман (Max Newman 1897- 1984) и его коллеги. Компьютер состоял из 1500 электронных ламп (2500 в новой версии Colossus Mark II), что делало Colossus самым мощным компьютером того времени. Его ближайший конкурент имел всего 150 ламп. Это позволило сократить время расшифровки перехваченных немецких сообщений с нескольких недель до нескольких часов. Модернизация Colossus Mark II считается первым программируемым компьютером в истории ЭВМ.

2. Особенности, достоинства и недостатки аналитических и численных методов

С помощью математического моделирования решение научной задачи сводится к решению математической задачи, являющейся её моделью. Для решения математических задач используются две основные группы методов: аналитические и численные.

Аналитические методы, как правило, позволяют получить решение задачи в виде формул. В частности, если математическая задача состоит в решении нелинейных уравнений, то использование известных из курса средней школы приемов сразу приводит к цели. К сожалению, на практике это бывает достаточно редко. Например, если задача свелась к решению уравнения с одной переменной:

то при всей тривиальности этой задачи выразить корни уравнения путем аналитических преобразований не удается. Как известно, многие уравнения и системы уравнений не имеют аналитических решений. В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение степени выше четвертой. Доказательство этого факта связано с именами математиков Абеля (1802-1829) и Галуа (1811-1832).

Аналогичные проблемы возникают также и при решении других математических задач. В частности, при вычислении определенных интегралов также часто не удается выразить первообразную через элементарные функции.

Для решения таких задач разрабатываются и применяются методы приближенных вычислений или численные методы, позволяющие свести решение математической задачи к выполнению конечного числа арифметических действий над числами. Таким образом, численные методы позволяют найти решение в виде числа или таблицы значений, найденных с заданной точностью.

Важным отличием и преимуществом аналитических методов перед численными является то, что они позволяют получить общее решение задачи в виде формулы, по которой можно изучать качественные особенности решения, а также исследовать влияние начальных условий и параметров задачи на характер решения. Численные же методы позволяют найти только частное решение задачи с конкретными значениями параметров и исходных данных, при этом численные методы обладают большей общностью.

3. Численное решение уравнений с одной переменной

Нелинейное уравнение с одной переменной в общем случае может быть записано в виде

где функция F(x) определена и непрерывна на конечном или бесконечном интервале a . lg x– 1 = 0. (3)

Решение. Уравнение (3) перепишем в виде равенства lg x=.

Отсюда ясно, что корни уравнения (3) могут быть найдены как абсциссы точек пересечения логарифмической кривой y = lg x и гиперболы y = . Построив эти кривые (см. рис. 1), приближенно найдем единственный корень уравнения (3) или определим его содержащий отрезок [2, 3].

Рис. 1 – Графическое отделение корней (пример 1)

Убедимся, что отрезок [2, 3] содержит один и только один корень уравнения (3).

Перепишем уравнение в виде F(x) = 0, где .

Тогда F(2) = 2 . lg(2) – 1 = 2 . 0.30103–1=0.60206 –1= –0.39794 0, т.е. на концах отрезка функция F(x) принимает значения разных знаков.

Найдем первую производную функции:

Следовательно, первая производная сохраняют свой знак на отрезке, а на концах отрезка функция F(x) принимает значения разных знаков, значит отрезок [2, 3] – отрезок изоляции искомого корня ξ.

После этого выполняется этап уточнения отделенных корней нелинейного уравнения. На каждом из найденных интервалов для поиска корня используются численные методы уточнения корня до заданной точности ε. К данным методам относятся: метод половинного деления (бисекций), метод хорд, метод касательных (Ньютона), метод последовательных приближений (итераций) и т.п.

4. Средства уточнения корней электронных таблиц Microsoft Excel

Электронные таблицы MS Excel входят в стандартный пакет формирования и обработки информации MS Office и установлены практически на каждом современном компьютере. Применение электронных таблиц упрощает работу с данными и позволяет получать результаты без проведения расчетов вручную или специального программирования. Наиболее широкое применение электронные таблицы нашли в экономических и бухгалтерских расчетах, но не все знают, что и в научно-технических задачах электронные таблицы можно использовать достаточно эффективно. Вычислительную мощь Excel обеспечивают встроенные функции, средства анализа и надстройки.

Надстройки – специальные средства, расширяющие возможности программы MS Excel. Именно надстройки делают ее удобной для использования в научно-технической работе. Хотя эти средства считаются внешними, дополнительными, доступ к ним осуществляется при помощи обычных команд командной строки (обычно через меню команд Сервис или Данные). При этом открываются специальные диалоговые окна, оформленные как стандартные диалоговые окна MS Excel.

Подключить или отключить установленные надстройки Excel можно с помощью Настройки панели быстрого доступа. Подключение надстроек увеличивает нагрузку на вычислительную систему, поэтому обычно рекомендуют подключать только те надстройки, которые реально используются.

Для уточнения корней с помощью ЭТ MS Excel можно использовать средство Подбор параметра (команда Данные → Анализ «что если») или надстройку Поиск решения.

Приведем лист MS Excel (см. рис. 2) с иллюстрацией применения средства Подбор параметра для уточнения корня уравнения (3), изолированного на отрезке [2, 3].

Рис. 2 – Графическое отделение корней уравнения двумя способами и подготовка к этапу уточнения

При подборе параметра Excel изменяет значение в одной конкретной ячейке, в нашем случае N32, до тех пор, пока вычисления по формуле в ячейке О32, ссылающейся на ячейку N32, не дадут нужного результата, а именно нуля функции (см. рис. 3).

Рис. 3 – Окно диалога средства Подбор параметра

После нажатия на кнопку OК MS Excel выведет окно диалога Результат подбора параметра (см. рис. 4). Если подобранное значение корня необходимо сохранить, то нажмите на ОК, и результат будет сохранен в ячейке, заданной ранее в поле Изменяя значения ячейки, в нашем случае – ячейка N32.

Рис. 4 – Окно диалога Результат подбора параметра

Таким образом, искомое значение корня, уточненное средством Подбор параметра, составит ξ = 2,50617208. При подборе параметра Excel использует итерационный (циклический) процесс, при этом количество итераций и точность может устанавливаться пользователем.

Рассмотрим теперь, как воспользоваться надстройкой Поиск решения на примере нахождения корней алгебраического уравнения х 3 – 10 . х + 2 = 0. На следующем листе MS Excel приведен этап графического отделения корней (см. рис. 5).

Рис. 5 – Этап графического отделения корней уравнения х 3 – 10 . х + 2 = 0

Анализ графика функции показывает, что решаемое уравнение имеет три действительных корня, определены отрезки изоляции искомых корней.

Для уточнения отделенных корней сформируем вторую таблицу, в которую занесем середины отрезков изоляции, которые будут взяты за начальные приближения к искомым корням. Кроме этого, таблица содержит столбец вычисленных значений функции F(x) = х 3 – 10 . х + 2. Далее из команды главного меню Данные следует вызвать надстройку Поиск решения. При этом откроется диалоговое окно, представленное на рис. 6.

Рис. 6 – Диалоговое окно надстройки Поиск решения

Для уточнения первого корня в поле Оптимизировать целевую функцию указываем адрес ячейки D23. Поскольку необходимо найти решение уравнения F(x) = 0, то в переключателе До: записываем значение правой части уравнения (т. е. 0). В поле Изменяя ячейки переменных: заносится абсолютный адрес ячейки С23. Для запуска процесса решения задачи следует щелкнуть по кнопке Найти решение. На экране появится диалоговое окно Результаты поиска решения с информацией о том, найдено или нет искомое решение (см. рис. 7). Если решение найдено, то далее следует выбрать один из следующих возможных вариантов:

• сохранить найденное решение, т. е. заменить исходные значения в изменяемых ячейках на значения, полученные в результате решения задачи;

• восстановить исходные значения в изменяемых ячейках.

Рис. 7 – Диалоговое окно Результаты поиска решения

Таким образом, искомое значение первого корня, уточненное надстройкой Поиск решения, составит ξ1 = -3,257896991. Аналогично находится второй корень ξ2 = 0,200809757. Третий корень найдем с помощью средства Подбор параметра. Результаты решения представлены на рис. 8.

Рис. 8 – Результаты уточнения третьего корня

ЗАКЛЮЧЕНИЕ

В результате выполнения данной научно-исследовательской работы достигнута цель исследования – я освоил приемы численного решения алгебраических и трансцендентных уравнений в среде электронных таблиц MS Excel. При этом я ознакомился с историей развития аналитических и численных методов решения уравнений и систем уравнений, изучил особенности, достоинства и недостатки аналитических и численных методов. Кроме этого, я ознакомился с вычислительными возможностями ЭТ MS Excel и изучил такие средства уточнения действительных корней нелинейных уравнений, как средство Подбор параметра и надстройка Поиск решения. Оба эти инструмента позволяют подобрать значение искомого корня, при котором функция F(ξ) обращается в ноль. На практике в среде ЭТ MS Excel были графически отделены и уточнены корни трансцендентного уравнения x. lg x – 1 = 0 и алгебраического х 3 – 10 . х + 2 = 0.

Надеюсь, что полученные знания и навыки помогут мне успешно сдать ОГЭ по дисциплинам математика и информатика и ИТК.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

1. Боголюбов А.Н. Математики. Механики. Библиографический справочник. – Киев: Наукова думка, 1983. – 638 с.

2. Б.П. Демидович, И.А. Марон. Основы вычислительной математики. – М.: Наука, 1966. – 664 с.

3. Дж. Уокенбах. Microsoft Office Excel 2007. Библия пользователя. – М.: Диалектика, 2008. – 816 с.

4. П. Дж. Бернс, Дж. Р. Николсон. Секреты Excel для Windows 95. – К.: Диалектика, 1996. – 576 с.

🔍 Видео

Решение уравнения в Excel. Используется средство "Подбор параметра"Скачать

Решение уравнения в Excel. Используется средство "Подбор параметра"

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Решить простейшее уравнение. MS Excel. Подбор параметраСкачать

Решить простейшее уравнение. MS Excel. Подбор параметра

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравнения

Решение системы линейных уравнений методом простых итераций в MS ExcelСкачать

Решение системы линейных уравнений методом простых итераций в MS Excel

5.1 Численные методы решения уравнений F(x)=0Скачать

5.1 Численные методы решения уравнений F(x)=0
Поделиться или сохранить к себе: