Решение уравнений 4 степени с комплексными корнями

Содержание
  1. Решение уравнений 4-ой степени. Метод Феррари
  2. Схема метода Феррари
  3. Приведение уравнений 4-ой степени
  4. Разложение на множители. Кубическая резольвента
  5. Пример решения уравнения 4-ой степени
  6. Решение уравнений четвертой степени
  7. Решение двучленного уравнения четвертой степени
  8. Решение возвратного уравнения четвертой степени
  9. Решение биквадратного уравнения
  10. Решение уравнений четвертой степени с рациональными корнями
  11. Решение уравнений четвертой степени по методу Феррари
  12. Комплексные числа и их приложение к решению уравнений третьей и четвертой степени (стр. 1 )
  13. Пользуясь понятиями противоположного и обратного комплексного числа, определим операции вычитания и деления комплексных чисел.
  14. Степени мнимой единицы
  15. Модуль комплексного числа.
  16. Свойства операции сопряжения
  17. .
  18. Последнее уравнение равносильно системе уравнений
  19. 📹 Видео

Видео:Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Решение уравнений 4-ой степени. Метод Феррари

Решение уравнений 4 степени с комплексными корнямиСхема метода Феррари
Решение уравнений 4 степени с комплексными корнямиПриведение уравнений 4-ой степени
Решение уравнений 4 степени с комплексными корнямиРазложение на множители. Кубическая резольвента
Решение уравнений 4 степени с комплексными корнямиПример решения уравнения 4-ой степени

Решение уравнений 4 степени с комплексными корнями

Видео:Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Схема метода Феррари

Целью данного раздела является изложение метода Феррари , с помощью которого можно решать уравнения четвёртой степени

a0x 4 + a1x 3 + a2x 2 +
+ a3x + a4 = 0,
(1)

где a0, a1, a2, a3, a4 – произвольные вещественные числа, причем Решение уравнений 4 степени с комплексными корнями

Метод Феррари состоит из двух этапов.

На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Видео:Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать

Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.

Приведение уравнений 4-ой степени

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 4 + ax 3 + bx 2 +
+ cx + d = 0,
(2)

где a, b, c, d – произвольные вещественные числа.

Сделаем в уравнении (2) замену

Решение уравнений 4 степени с комплексными корнями(3)

где y – новая переменная.

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

то уравнение (2) принимает вид

В результате уравнение (2) принимает вид

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Если ввести обозначения

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

то уравнение (4) примет вид

y 4 + py 2 + qy + r = 0,(5)

где p, q, r – вещественные числа.

Первый этап метода Феррари завершён.

Видео:Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Разложение на множители. Кубическая резольвента

Добавив и вычитая в левой части уравнения (5) выражение

где s – некоторое число, которое мы определим чуть позже, из (5) получим

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Следовательно, уравнение (5) принимает вид

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

то уравнение (6) примет вид

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Избавляясь от знаменателя, уравнение (7) можно переписать в виде

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

или, раскрыв скобки, — в виде

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

Если какое-нибудь решение кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

а также квадратное уравнение

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Вывод метода Феррари завершен.

Видео:Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Пример решения уравнения 4-ой степени

Пример . Решить уравнение

x 4 + 4x 3 – 4x 2 –
– 20x – 5 = 0.
(12)

Решение . В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.(13)

то в результате замены (13) уравнение (12) принимает вид

y 4 – 10y 2 – 4y + 8 = 0.(14)

В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10, q = – 4, r = 8.(15)

В силу (9) и (15) кубической резольвентой для уравнения (14) служит уравнение

которое при сокращении на 2 принимает вид:

s 3 + 5s 2 – 8s – 42 = 0.(16)
s = – 3.(17)

Подставляя значения (15) и (17) в формулу (10), получаем уравнение

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Подставляя значения (15) и (17) в формулу (11), получаем уравнение

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Замечание . При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y 4 – 10y 2 – 4y + 8 =
= (y 2 – 2y – 4) (y 2 +
+ 2y – 2).
(20)

Предоставляем посетителю нашего сайта возможность убедиться в справедливости равенства (19) в качестве несложного упражнения.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A — 2 B A x 2 = 0 x 2 + B A 2 — 2 B A x 2 = 0 x 2 — 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 — 4 x 2 = 2 x 2 — 2 x + 1 ( 2 x 2 + 2 x + 1 )

Теперь найдем корни квадратных трехчленов.

2 x 2 — 2 x + 1 = 0 D = ( — 2 ) 2 — 4 · 2 · 1 = — 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 — D 2 · 2 = 1 2 — i

2 x 2 + 2 x + 1 = 0 D = 2 2 — 4 · 2 · 1 = — 4 x 3 = — 2 + D 2 · 2 = — 1 2 + i x 4 = — 2 — D 2 · 2 = — 1 2 — i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = — 1 2 ± i .

Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2 :

A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 — 2 ) + B y + C = 0 A y 2 + B y + C — 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 — 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 — 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 — 4 · 2 · 6 = 12 + 4 6 + 2 — 8 6 = = 12 — 4 6 + 2 = 2 3 — 2 2 y 1 = — 2 3 — 2 + D 2 · 2 = — 2 3 — 2 + 2 3 — 2 4 = — 2 2 y 2 = — 2 3 — 2 — D 2 · 2 = — 2 3 — 2 — 2 3 + 2 4 = — 3

Вернемся к замене: x + 1 x = — 2 2 , x + 1 x = — 3 .

Решим первое уравнение:

x + 1 x = — 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 — 4 · 2 · 2 = — 14 x 1 = — 2 — D 2 · 2 = — 2 4 + i · 14 4 x 2 = — 2 — D 2 · 2 = — 2 4 — i · 14 4

Решим второе уравнение:

x + 1 x = — 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 — 4 · 1 · 1 = — 1 x 3 = — 3 + D 2 = — 3 2 + i · 1 2 x 4 = — 3 — D 2 = — 3 2 — i · 1 2

Ответ: x = — 2 4 ± i · 14 4 и x = — 3 2 ± i · 1 2 .

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Решить биквадратное уравнение 2 x 4 + 5 x 2 — 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y — 3 = 0 D = 5 2 — 4 · 2 · ( — 3 ) = 49 y 1 = — 5 + D 2 · 2 = — 5 + 7 4 = 1 2 y 2 = — 5 — D 2 · 2 = — 5 — 7 4 = — 3

Следовательно, x 2 = 1 2 или x 2 = — 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 — 4 · 16 · 9 = 20449 y 1 = — 145 + D 2 · 16 = — 145 + 143 32 = — 1 16 y 2 = — 145 — D 2 · 16 = — 145 — 143 32 = — 9

Поэтому, в силу замены переменной, x 2 = — 1 16 или x 2 = — 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Видео:9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.Скачать

9 класс. Алгебра. Решение уравнений четвертой степени. Возвратные уравнения.

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Видео:Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 — x — 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = — 1 , D = — 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 — B y 2 + A C — 4 D y — A 2 D + 4 B D — C 2 = 0 y 3 — 3 y 2 + 21 y — 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 — 3 · 1 2 + 21 · 1 — 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 — B + y 0 x 2 + A 2 y 0 — C x + y 0 2 4 — D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 — 1 2 x — 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x — 2 = 0

Корнями первого уравнения будут x = — 1 ± i · 2 , корнями второго х = 1 и х = — 2 .

Ответ: x 1 , 2 = — 1 ± i 2 , x 3 = 1 , x 4 = — 2 .

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Комплексные числа и их приложение к решению уравнений третьей и четвертой степени (стр. 1 )

Решение уравнений 4 степени с комплексными корнямиИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

Решение уравнений 4 степени с комплексными корнями

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

КОМПЛЕКСНЫЕ ЧИСЛА И ИХ

ПРИЛОЖЕНИЕ К РЕШЕНИЮ

И ЧЕТВЕРТОЙ СТЕПЕНИ

Учебное пособие для студентов

кандидат физико-математических наук, доцент

Комплексные числа и их приложение к решению уравнений 3-й и 4-й степени. Учебное пособие для студентов физико-математического факультета / сост.: – Воронежский госпедуниверситет, 2010. – 92 с.

Учебное пособие представляет собой курс лекций и практических занятий по теме «Комплексные числа». Пособие делится на четыре части: комплексные числа в алгебраической форме, геометрическая интерпретация комплексных чисел, комплексные числа в тригонометрической форме, приложение теории комплексных чисел к решению кубических уравнений и уравнений 4-й степени. В заключение приводится краткий исторический обзор формирования понятия комплексного числа и действий над комплексными числами.

Предназначено для студентов физико-математического факультета Воронежского госпедуниверситета.

Теория комплексных чисел является составной частью курса «Высшая алгебра» в педагогических вузах и предполагает глубокое знание ее основ, а также методов и приемов, применяемых при решении широкого класса задач как алгебраического, так и геометрического содержания. Будущие учителя должны грамотно и непринужденно оперировать с основными понятиями, действиями и интерпретациями комплексных чисел, поскольку азы теории комплексных чисел являются частью учебной программы по математике для профильных классов. Это объясняется тем, что, будучи непосредственным обобщением понятия действительного числа, комплексное число является завершающим элементом в стройной и строгой логической
конструкции понятия числа.

Алгебраическая природа комплексного числа состоит в том, что комплексное число есть элемент алгебраического расширения С поля действительных чисел R , получаемого присоединением к полю R корня i многочлена f(x) = x2 + 1 . Получающееся таким путем поле С называется полем комплексных чисел.

Наиболее важное свойство комплексных чисел состоит в том, что оно алгебраически замкнуто, т. е. любой многочлен с коэффициентами из С разлагается на линейные множители. Иначе это свойство алгебраической замкнутости выражается в том, что любой многочлен степени n ≥ 1 с коэффициентами из С имеет в поле комплексных чисел по крайней мере один корень (теорема Даламбера – Гаусса).

Изучение теории комплексных чисел выполняет следующие образовательные функции.

1) Расширение математического кругозора и повышение математической культуры учащихся.

Наличие у комплексных чисел более тесной, нежели у других числовых множеств, связи с геометрией (в частности, с векторным исчислением) представляет широкие возможности, с одной стороны, применения алгебраических методов к решению геометрических
задач (задачи на построение ГМТ), а с другой стороны, наглядных геометрических интерпретаций различных алгебраических операций (действий с комплексными числами в тригонометрической форме).

2) Логическое завершения развития понятия числа.

3) Выделение из множества всех алгебраических уравнении лишь тех, которые решаются в радикалах, т. е. для которых существуют формулы, выражающие корни уравнения через его коэффициенты.

Сюда относится решение уравнений 3-й степени (и сводящихся к ним уравнений 4-й степени), поскольку по теореме Абеля: «Ни для какого натурального числа Решение уравнений 4 степени с комплексными корняминельзя указать формулу, которая выражала бы корни любого уравнения п-й степени через его коэффициенты при помощи радикалов».

В первой главе пособия сначала вводится понятие комплексного числа в алгебраической форме, определяются операции сложения, вычитания, умножения, деления, а также операция сопряжения для комплексных чисел в алгебраической форме; излагается правило извлечения квадратного корня из комплексного числа.

Во второй главе изучается геометрическая интерпретация комплексных чисел в виде точек или векторов комплексной плоскости.

В третьей главе рассмотрены действия над комплексными числами в тригонометрической форме.

Четвертая глава посвящена решению уравнений 3-й и 4-й степеней.

Завершает пособие краткая историческая справка о возникновении понятия комплексного числа.

Особенностью изложения материала является форма в виде лекционных и практических занятий. Эта форма выбрана для удобства использования представленного материала как преподавателями, так и студентами. В конце каждой из первых трех глав приведены примерные варианты контрольных работ.

Глава 1. КОМПЛЕКСНЫЕ ЧИСЛА В АЛГЕБРАИЧЕСКОЙ ФОРМЕ

Занятие 1. Введение понятия комплексного числа.

Сложение, вычитание, умножение и деление комплексных чисел. Степени мнимой единицы

Понятие числа прошло длинный исторический путь. В процессе развития математики числовая система расширялась не один раз. Уже на ранних этапах развития человечества в результате счета возникают натуральные числа. Постепенно складывается представление о бесконечности множества натуральных чисел и появляется понятие натурального ряда бесконечной последовательности чисел 1, 2, 3, 4, 5, . . Затем возникают дроби, нуль, отрицательные числа, необходимые для
решения линейных уравнений вида

Поскольку рациональных чисел было достаточно для того, чтобы с любой степенью точности выразить результат любого измерения, то долгое время считали, что результат измерения всегда выражается или натуральным числом, или отношением двух таких чисел, т. е. дробью.

Однако еще в школе Пифагора был обнаружен тот факт, что диагональ квадрата несоизмерима с его стороной и поэтому не может быть точно выражена рациональным числом. Это открытие привело в конце концов к тому, что в математику вошли иррациональные числа.

Рациональные числа вместе с иррациональными образуют множество действительных чисел, которое является расширением множества рациональных чисел, поскольку на нем также определены четыре арифметических действия: сложение, вычитание, умножение и деление (кроме деления на нуль).

Важное место в алгебре занимает решение алгебраических уравнений, т. е. уравнений вида

Решение уравнений 4 степени с комплексными корнями,

где а0, а1, . . . , аn — действительные числа. Однако оказалось, что для решения таких уравнений действительных чисел явно не достаточно. Например, действительных корней не имеет квадратное уравнение с отрицательным дискриминантом. Простейшим таким уравнением является уравнение

Для того чтобы это уравнение имело решение, необходимо расширить множество действительных чисел путем присоединения к нему корня уравнения

Обозначим этот корень через i. Таким образом, по определению

Символ i называется мнимой единицей. С его помощью и с помощью пары действительных чисел а и b составляется выражение вида

Полученные выражения назвали комплексными числами, поскольку они содержали как действительную, так и мнимую части (от французских слов rее1 – действительный и imaginaire – мнимый, воображаемый). Название комплексное переводится как составное — по виду выражения z = a+bi.

Итак, комплексными числами называются выражения вида

где а и b действительные числа, а i некоторый символ,
удовлетворяющий условию i= . Число а называется
действительной частью комплексного числа z=a+bi, а
число b его мнимой частью. Для их обозначения используются символы

Комплексные числа вида z=a+0∙i являются
действительными числами и, следовательно, множество комплексных чисел содержит в себе множество действительных чисел. Если потребовать, как мы сделаем это ниже, чтобы операции сложения и умножения комплексных чисел не выводили за пределы множества комплексных чисел и обладали всеми свойствами одноименных операций на множестве действительных чисел, то множество комплексных чисел будет расширением множества действительных чисел.

Комплексные числа вида z=0+bi называются чисто
мнимыми.

Два комплексных числа z1=a1+b1i и z2=a2+b2i
называются равными, если равны их действительные и мнимые части, т. е. если выполняются равенства

Определим операции сложения и умножения комплексных чисел.

Суммой двух комплексных чисел Решение уравнений 4 степени с комплексными корнямии Решение уравнений 4 степени с комплексными корняминазывается комплексное число Решение уравнений 4 степени с комплексными корнямивида

Решение уравнений 4 степени с комплексными корнями.

Произведение двух комплексных чисел z1=a1+b1i и z2=a2+b2i можно найти, почленно умножая числа z1 и z2:

Решение уравнений 4 степени с комплексными корнями.

Таким образом, произведением двух комплексных чисел z1=a1+b1i и z2=a2+b2i называется комплексное число z1 ∙ z2 вида

Решение уравнений 4 степени с комплексными корнями.

Пример. Найдите сумму комплексных чисел z1= 2 + 3i и z2= 3 – i.

Пример. Найдите произведение комплексных чисел z1= 2 + 3i и z2= 1 – i .

Свойства операций сложения и умножения комплексных чисел

Каковы бы ни были комплексные числа Решение уравнений 4 степени с комплексными корнями, справедливы следующие равенства.

1. Коммутативный (переместительный) закон сложения:

Решение уравнений 4 степени с комплексными корнямиРешение уравнений 4 степени с комплексными корнями.

2. Ассоциативный (сочетательный) закон сложения:

Решение уравнений 4 степени с комплексными корнями.

3. Коммутативный закон умножения:

Решение уравнений 4 степени с комплексными корнямиРешение уравнений 4 степени с комплексными корнями.

4. Ассоциативный закон умножения:

Решение уравнений 4 степени с комплексными корнями.

5. Дистрибутивный (распределительный) закон умножения относительно сложения:

Решение уравнений 4 степени с комплексными корнями.

Проведем доказательство свойства 3 (остальные свойства доказываются аналогично).

Доказательство. Пусть Решение уравнений 4 степени с комплексными корнями, Решение уравнений 4 степени с комплексными корнями. Тогда поскольку а1 , b1 , a2 и b2 – действительные числа, для которых умножение коммутативно, получаем:

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями

Кроме того, в множестве комплексных чисел есть «особые» элементы

0 = 0 + 0i и 1= l + 0i ,

которые обладают такими же свойствами, что и на множестве действительных чисел, а именно, для любого комплексного числа z = а + bi имеют место равенства:

8. Произведение двух комплексных чисел равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю.

Доказательство. Пусть Решение уравнений 4 степени с комплексными корнями, Решение уравнений 4 степени с комплексными корнямии Решение уравнений 4 степени с комплексными корнями. Тогда по определению равенства и произведения двух комплексных чисел получаем систему уравнений :

Решение уравнений 4 степени с комплексными корнями

Умножив уравнение (1) на а2 , а уравнение (2) на b2 и сложив полученные уравнения, приходим к системе :

Решение уравнений 4 степени с комплексными корнями

Возможны два случая.

Тогда из уравнения (1)* следует, что b1b2 = 0.
a) Если b1 = 0 , а b2 ≠ 0, то z1 = a1 + b1i = 0.
б) Если b2 = 0 , а b1 ≠ 0 то из уравнения (2) следует, что a2b1 = 0 , значит, а2 = 0 , т. е. z2 = a2 + b2i = 0.

в) Если b1 = b2 = 0 , то z1 = 0 .

Тогда из уравнения (2)* следует, что, a22 + b22 = 0 , т. е. а2 = b2 = 0 , значит, z2 = 0.

10. Любому комплексному числу z=а+bi соответствует противоположное комплексное число (–z) такое, что z + (–z) = 0 .

Решение уравнений 4 степени с комплексными корнями

11. Всякому комплексному числу z=а+bi, отличному от нуля, соответствует обратное комплексное число z1 такое, что z z–1 = 1 .

Доказательство. Условие z ≠ 0 равносильно условию а2 + b2 > 0 . Вычислим z–1.

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями.

Пользуясь понятиями противоположного и обратного комплексного числа, определим операции вычитания и деления комплексных чисел.

Для того чтобы найти разность двух комплексных чисел Решение уравнений 4 степени с комплексными корнямии Решение уравнений 4 степени с комплексными корнями, достаточно сложить число z1 с числом, противоположным числу z2 , т. е.

Решение уравнений 4 степени с комплексными корнями.

Пример. Вычислите z1 – z2 , если z1 = 5 – 2i ,

Для того чтобы разделить комплексное число Решение уравнений 4 степени с комплексными корнямина комплексное число Решение уравнений 4 степени с комплексными корнями, не равное нулю, достаточно умножить число z1 на число, обратное числу z2 , т. е.

Решение уравнений 4 степени с комплексными корнями

Пример. Вычислите Решение уравнений 4 степени с комплексными корнями.

Решение уравнений 4 степени с комплексными корнями.

Видео:Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столбиСкачать

Как решать уравнения 4 степени Решите уравнение четвертой степени Разложить на множители Безу столби

Степени мнимой единицы

Вычислим степени мнимой единицы i. Прежде всего, как и для действительных чисел, положим i0 = 1 . Тогда

i2 = –1 (по определению мнимой единицы);

Вообще, если натуральный показатель степени mпри делении на 4 дает в остатке r , т. е. если m = 4n+r , где n натуральное число, то

Решение уравнений 4 степени с комплексными корнями;

Решение уравнений 4 степени с комплексными корнями

Пример. Вычислите а) i233 ; b) i102; с) i67 ; d) i516.

Решение. а) i233 = i232 + 1 = i ;

Занятие 2. Операция сопряжения и ее свойства.

Видео:Решение уравнений четвертой степени. Идея метода ФеррариСкачать

Решение уравнений четвертой степени. Идея метода Феррари

Модуль комплексного числа.

Извлечение корня квадратного из комплексного числа

Комплексное число Решение уравнений 4 степени с комплексными корняминазывается сопряженным комплексному числу, если

Решение уравнений 4 степени с комплексными корнями.

Пример. Решение уравнений 4 степени с комплексными корнями.

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Свойства операции сопряжения

2. Для любого действительного числа а справедливо равенство Решение уравнений 4 степени с комплексными корнями.

3. Для любого действительного числа b справедливо равенство .

Справедливость свойств 1-3 следует непосредственно из определения операции сопряжения.

4. Решение уравнений 4 степени с комплексными корнями.

Доказательство. Пусть Решение уравнений 4 степени с комплексными корнями, Решение уравнений 4 степени с комплексными корнями. Тогда Решение уравнений 4 степени с комплексными корнями, Решение уравнений 4 степени с комплексными корнями. Поэтому

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями.

Доказательство. Пусть Решение уравнений 4 степени с комплексными корнями, Решение уравнений 4 степени с комплексными корнями. Тогда

Решение уравнений 4 степени с комплексными корнями

С другой стороны,

Решение уравнений 4 степени с комплексными корнями.

Полученные одинаковые результаты доказывают справедливость свойства 5 .

Следствие из свойства 5. Для любого натурального числа n справедливо равенство

Решение уравнений 4 степени с комплексными корнями.

6. Решение уравнений 4 степени с комплексными корнями.

Справедливость данного равенства следует из равенства Решение уравнений 4 степени с комплексными корнямии свойства 5: Решение уравнений 4 степени с комплексными корнями.

7. Сумма и произведение двух комплексно сопряженных чисел являются действительными числами.

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями.

Модулем комплексного числа z = а + bi называется действительное число вида

Решение уравнений 4 степени с комплексными корнями.

Непосредственно из свойства 7 следует, что

Решение уравнений 4 степени с комплексными корнями.

8. Теорема о сопряженном корне.

Если число Решение уравнений 4 степени с комплексными корнямиявляется корнем уравнения

Решение уравнений 4 степени с комплексными корнями(1)

с действительными коэффициентами а0, a1 , . . . , аn , то число Решение уравнений 4 степени с комплексными корнямитакже является корнем уравнения (1) .

Доказательство. По определению корня имеем :

Решение уравнений 4 степени с комплексными корнями;

Решение уравнений 4 степени с комплексными корнями(2)

Применим к обеим частям равенства (2) операцию сопряжения. Из свойств операции сопряжения следует, что

Решение уравнений 4 степени с комплексными корнями

так как все коэффициенты ai — действительные числа (по условию). Кроме того,

Решение уравнений 4 степени с комплексными корнями; Решение уравнений 4 степени с комплексными корнями.

Решение уравнений 4 степени с комплексными корнями

Решение уравнений 4 степени с комплексными корнями.

Последнее равенство означает, что число z = а – bi является корнем уравнения (1) .

Пример. Зная, что корнем уравнения

является число z1 = 2 + i , найти все корни данного уравнения.

Решение. Поскольку все коэффициенты уравнения (3) – действительные числа, то на основании теоремы 8 делаем вывод, что число z2 = 2 – i также является корнем уравнения (3).

Пусть z3 – неизвестный корень уравнения (3), тогда

Разделив обе части последнего равенства на х2 – 4х + 5 , получим

Следовательно, z3 = 3 .

Найдем значение корня квадратного из числа z=а+bi . Пусть

Решение уравнений 4 степени с комплексными корнями,

где х и у — неизвестные действительные числа. Возводя обе части этого равенства в квадрат, получаем:

Решение уравнений 4 степени с комплексными корнями.

Последнее уравнение равносильно системе уравнений

Решение уравнений 4 степени с комплексными корнями

Возведем каждое уравнение системы в квадрат и сложим полученные равенства. Решим систему:

Решение уравнений 4 степени с комплексными корнями

Из второго уравнения последней системы находим

Решение уравнений 4 степени с комплексными корнями,

где в правой части равенства следует иметь в виду арифметический корень, так как сумма х2+у2 неотрицательна. Учитывая, кроме того, что х2 –­­ у2 = а , получаем:

Решение уравнений 4 степени с комплексными корнями.

Так как Решение уравнений 4 степени с комплексными корнями, то оба полученные числа положительны. Извлекая из них квадратные корни, получим действительные значения для х и у :

Решение уравнений 4 степени с комплексными корнями.

📹 Видео

Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Формула Кардано. Решение уравнений третьей степени.Скачать

Формула Кардано. Решение уравнений третьей степени.

Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ
Поделиться или сохранить к себе: