Решение тригонометрических уравнений в паскале

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Тригонометрические функции Cos и Sin

Подпишись на новости, чтобы ничего не пропустить

Тригонометрические функции Cos и Sin в Паскале вычисляют соответственно косинус угла и синус угла. Можете сразу перейти к просмотру видео, где я рассказал об этих функциях. Но также рекомендую прочитать статью — не вся информация вошла в видеоролик.

На всякий случай (для тех, кто подзабыл математику) я расскажу, что такое косинус (Cos) и синус (Sin) угла. Но позже — в конце статьи. А сейчас синтаксис в Паскале и некоторые особенности работы с этими функциями.

Синтаксис функции Cos:

function Cos(Х : ValReal) : ValReal;

Синтаксис функции Sin:

function Sin(Х : ValReal) : ValReal;

О типе ValReal я рассказывал здесь.

Функция Cos возвращает косинус угла Х. Функция Sin возвращает синус угла Х. Значение угла передаётся через параметр Х и выражается в радианах.

ВНИМАНИЕ! Не в градусах, а в радианах!

Так как мы больше привыкли измерять углы в градусах, то, если мы не хотим попрощаться с этой привычкой, нам придётся переводить градусы в радианы.

Формула перевода градусов в радианы проста:

Радиан := Пи * Градус / 180

Как известно, число ПИ равно 3,14 (примерно). Можно использовать непосредственно число для преобразования градусов в радианы.

Однако удобнее использовать предопределённую константу Pi, как это сделано в примере ниже.

Здесь мы объявляем три переменных. Затем просим пользователя ввести угол в градусах и читаем введённое значение в переменную z.

Затем преобразуем градусы в радианы и сохраняем полученный результат в переменную у.

Ну а затем уже используем функции Cos и Sin для получения нужных нам косинуса и синуса для угла, указанного пользователем.

А напоследок выводим значение числа ПИ, которое берём из предопределённой в Паскале константы Pi.

Ну а теперь пришло время выполнить своё обещание, то есть рассказать подробнее о косинусах и синусах.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Что такое косинус и синус угла

Для начала внимательно посмотрите на рисунок.

Решение тригонометрических уравнений в паскале

Как видно из рисунка, величина тригонометрических функций зависит от угла между осью Х и прямой, проведенной из центра координат.

На рисунке угол равен 45 градусам. При таком значении угла синус равен косинусу (0,7071).

Если угол равен 0 градусов (прямая совпадает с осью Х), то косинус равен 1, а синус равен 0. Если угол равен 90 градусов (прямая совпадает с осью Y), то косинус равен 0, а синус равен 1.

В любом случае значения этих функций лежат в пределах от –1 до +1 включительно. Например, синус 30 градусов равен 0,5. В этом случае значение 0,5 – это так называемая обратная функция. Если необходимо указать, что функция является обратной, то к названию функции добавляют приставку arc. Пример (в функции cos угол указан в градусах):

Остальные тригонометрические функции – это выражения, содержащие синус и/или косинус:

И хотя в Паскале есть функции для вычисления других тригонометрических функций, вы можете вполне обойтись без них, используя приведённые выше формулы.

И теперь у вас достаточно знаний, чтобы написать какую-нибудь свою полезную программку для вычисления тригонометрических функций. Это требуется очень часто студентам, школьникам и инженерам.

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Решение тригонометрических уравнений в паскале

Команда solve, примененная для решения тригонометрического уравнения, выдает только главные решения, то есть решения в интервале [0,2 p ]. Для того, чтобы получить все решения, следует предварительно ввести дополнительную команду _EnvAllSolutions:=true.

Решение тригонометрических уравнений в паскале

В Maple символ _Z

обозначает константу целого типа, поэтому решение данного уравнения в привычной форме имеет вид , где n – целые числа.

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Тригонометрические функции в паскале

Ниже приведены тригонометрические функции, используемые в языке программирования Pascal. Их аргумент может быть целым или вещественным; результат в любом случае – вещественный.

1 радиан = 180 / пи

sin(выражение) – синус угла, измеренного в радианах
sin(-pi / 6):4:1. Результат: -0.5
sin(0):4:1. Результат: 0.0
sin(pi / 2):4:1. Результат: 1.0

cos(выражение) – косинус угла, измеренного в радианах
cos(-pi / 6):4:1. Результат: 0.8
cos(0):4:1. Результат: 1.0
cos(pi):4:1. Результат: -1.0

arctan(выражение) – арктангенс
arctan(1e35):8:5. Результат: 1.57080
arctan(0):4:1. Результат: 0.0
arctan(-1):8:5. Результат: 0.78540

Pers.narod.ru. Алгоритмы. Некоторые математические расчёты на Паскале

Как известно, ядро Паскаля предельно компактно, и многие математические функции в модуле System просто отсутствуют. Поэтому у людей, изучающих основы программирования именно на этом языке, типовые математические расчёты зачастую вызывают проблемы. Далее приводятся пути решения наиболее типичных из этих проблем.

Возведение в произвольную степень на Паскале

Требуется вычислить значение с = a b . В зависимости от значений основания a и показателя степени b , вычисление степени может быть реализовано по-разному.

Если a > 0 , а b может принимать произвольные вещественные значения, используем известную формулу a b = exp (b * ln a) :

Если b – целое число (вообще говоря, «не слишком большое» по модулю), а a – любое (не равное нулю при b ), возведение в степень может быть реализовано с помощью цикла:

Для целого b и не равного нулю a выгоднее считать с помощью экспоненты и логарифма, не забывая о том, что не существует логарифмов от отрицательных чисел:

Вычисление корня произвольной степени на Паскале

Стандартная функция sqrt умеет извлекать только квадратный корень.

Извлечь корень степени n (где n – натуральное) из числа a можно всегда, кроме случая, когда a и при этом n четно. Извлечь корень степени n из числа a означает возвести число a в степень 1/n . При этом знак корня совпадает со знаком a . Ниже приводится код функции, вычисляющей корень произвольной степени n от своего аргумента a :

Вычисление логарифмов на Паскале

Стандартная функция ln вычисляет только натуральный логарифм. Для вычисления логарифмов по другим основаниям можно применить формулу log a b = ln b / ln a :

В частности, для вычисления десятичного логарифма lg b можно записать:

Вычисление обратных тригонометрических функций (арксинусов и арккосинусов) на Паскале

В Паскале имеется стандартная функция arctan для вычисления арктангенса.

Другие обратные тригонометрические функции могут быть выражены через неё с помощью формул тригонометрии.

Для вычисления y = arcsin x , где, конечно, |x| , можно применить один из следующих способов:

на практике следует помнить о возможных погрешностях при сравнении вещественных чисел (глава учебника, п.7.2).

Для вычисления z = arccos x , где |x| , можно использовать тот факт, что сумма арксинуса и арккосинуса некоторого значения равна прямому углу:

Вычисление полярных углов на Паскале

Полярным углом точки с координатами (x,y) , отличной от начала координат, называют угол между положительным направлением оси Ox и направлением из начала координат на данную точку. При этом угол отсчитывается против часовой стрелки. Строго говоря, полярный угол не всегда равен arctg (y/x) , это верно лишь при x > 0 . Кроме того, при делении большого значения y на малое x возможно переполнение. Показанная ниже функция вычисляет полярный угол fi , лежащий в промежутке от -pi до +pi , для любой точки с координатами (x,y) , не совпадающей с началом координат:

Проблема с приведением типов на Паскале

Начинающие «паскалисты» нередко не понимают строгой типизированности этого языка, из-за чего находят в нём несуществующие «баги». Вот простейший пример.

Эта программа выдаст отнюдь не 200000, как может показаться. Ответ будет равен 3392 (результат переполнения). Никакого бага нет. Тип выражения в Паскале определяется только типом входящих в него переменных, но не типом переменной, куда записывается результат. То есть, мы вычислили с переполнением произведение двух переменных типа Integer , а потом «испорченный» результат переписали в переменную типа Longint . ничего не изменит и

Здесь тоже сначала вычислен результат с переполнением, затем преобразован к типу Longint . А вот

рулит, получите свои 200000 🙂 Указанная ошибка часто встречается в программах начинающих. Чтобы её не повторять, помните – выражение в Паскале должно быть приведено к нужному типу в процессе его вычисления, а не после его окончания или при присваивании.

Тригонометрические функции Cos и Sin в Паскале вычисляют соответственно косинус угла и синус угла. Можете сразу перейти к просмотру видео, где я рассказал об этих функциях. Но также рекомендую прочитать статью – не вся информация вошла в видеоролик.

На всякий случай (для тех, кто подзабыл математику) я расскажу, что такое косинус (Cos) и синус (Sin) угла. Но позже – в конце статьи. А сейчас синтаксис в Паскале и некоторые особенности работы с этими функциями.

Синтаксис функции Cos:

function Cos(Х : ValReal) : ValReal;

Синтаксис функции Sin:

function Sin(Х : ValReal) : ValReal;

О типе ValReal я рассказывал здесь.

Функция Cos возвращает косинус угла Х. Функция Sin возвращает синус угла Х. Значение угла передаётся через параметр Х и выражается в радианах.

ВНИМАНИЕ! Не в градусах, а в радианах!

Так как мы больше привыкли измерять углы в градусах, то, если мы не хотим попрощаться с этой привычкой, нам придётся переводить градусы в радианы.

Формула перевода градусов в радианы проста:

Радиан := Пи * Градус / 180

Как известно, число ПИ равно 3,14 (примерно). Можно использовать непосредственно число для преобразования градусов в радианы.

Однако удобнее использовать предопределённую константу Pi, как это сделано в примере ниже.

Здесь мы объявляем три переменных. Затем просим пользователя ввести угол в градусах и читаем введённое значение в переменную z.

Затем преобразуем градусы в радианы и сохраняем полученный результат в переменную у.

Ну а затем уже используем функции Cos и Sin для получения нужных нам косинуса и синуса для угла, указанного пользователем.

А напоследок выводим значение числа ПИ, которое берём из предопределённой в Паскале константы Pi.

Ну а теперь пришло время выполнить своё обещание, то есть рассказать подробнее о косинусах и синусах.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Что такое косинус и синус угла

Для начала внимательно посмотрите на рисунок.

Решение тригонометрических уравнений в паскале

Как видно из рисунка, величина тригонометрических функций зависит от угла между осью Х и прямой, проведенной из центра координат.

На рисунке угол равен 45 градусам. При таком значении угла синус равен косинусу (0,7071).

Если угол равен 0 градусов (прямая совпадает с осью Х), то косинус равен 1, а синус равен 0. Если угол равен 90 градусов (прямая совпадает с осью Y), то косинус равен 0, а синус равен 1.

В любом случае значения этих функций лежат в пределах от –1 до +1 включительно. Например, синус 30 градусов равен 0,5. В этом случае значение 0,5 – это так называемая обратная функция. Если необходимо указать, что функция является обратной, то к названию функции добавляют приставку arc. Пример (в функции cos угол указан в градусах):

Остальные тригонометрические функции – это выражения, содержащие синус и/или косинус:

И хотя в Паскале есть функции для вычисления других тригонометрических функций, вы можете вполне обойтись без них, используя приведённые выше формулы.

И теперь у вас достаточно знаний, чтобы написать какую-нибудь свою полезную программку для вычисления тригонометрических функций. Это требуется очень часто студентам, школьникам и инженерам.

📸 Видео

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

Математика это не ИсламСкачать

Математика это не Ислам

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.

Математика. Тригонометрические уравненияСкачать

Математика. Тригонометрические уравнения

Решение тригонометрических уравнений. Практическая часть. 10 класс.Скачать

Решение тригонометрических уравнений. Практическая часть. 10 класс.

Решение тригонометрических уравнений методом вспомогательного углаСкачать

Решение тригонометрических уравнений методом вспомогательного угла

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.
Поделиться или сохранить к себе: