Существует возможность отобразить всякий корень уравнения sin х = а, как абсциссу некой точки пересечения синусоиды у =sinх и прямой у = а, и, соответственно верно обратное, абсцисса всякой такой точки пересечения выступает одним из корней уравнения.
При | а| >1 синусоида у = sin х не пересечется с прямой у = а. В данном случае у уравнения нет корней.
При а = 0 у уравнение sin x = а будут корни:
где m изменяется по всем целым числам (m = 0, ±1, ±2, ±3, . ).
Несомненно, arcsin0 = 0 и соответственно получаем (-1) m arcsin 0 + mπ = mπ.
При а = 1, корни уравнения определяются по формуле:
где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . ).
Для обоснования формулы выполним подстановку: а = 1 в формулу:
(-1) m arcsin0+ mπ = mπ и принимая к сведению, что arcsin 1= π /2, имеем: (- 1) m arcsin 1 + mπ= (- 1) mπ /2 + mπ.
где k изменяется по всем целым числам (k = 0, ±1, ±2, ±3, . . .).
Необходимо учитывать, что все вышеуказанные формулы можно применять в том случае, когда искомый угол х представлен в радианах. Когда х представлен в градусах, то эти формулы нужно преобразовать.
К примеру, вместо формулы (-1) m arcsin 0 + mπ = mπ необходимо применять формулу х= (-1) m arcsinа + 180m, вместо формулы х = mπ — формулу х= 180 m и т. д.
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Арксинус. Решение уравнения sin x = a
п.1. Понятие арксинуса
В записи (y=sinx) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb); если (sinx=0), то (x=pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).
(arcsinfrac12=fracpi6, arcsinleft(-frac<sqrt>right)=-frac)
(arcsin2) – не существует, т.к. 2> 1
п.2. График и свойства функции y=arcsinx
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2) . Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_=fracpi2) достигается в точке x=1
Минимальное значение (y_=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)) .
п.3. Уравнение sinx=a
Значениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус? |
Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.
1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac) — это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac), синус полученного угла (sinfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.
2) Решим уравнение (sinx=0,8)
Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках. По определению правая точка – это угол, равный arcsin0,8. Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin0,8). Добавление или вычитание полных оборотов к каждому из решений даст другие корни. Получаем ответ: (x_1=arcsin0,8+2pi k,) (x_2=pi-arcsin0,8+2pi k) |
Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^ arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^ arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin x=arcsina+2pi n\ x=pi-arcsina+2pi n end right. $$ Что и требовалось доказать.
Для примеров, решённых выше, можем записать: $$ 1) left[ begin x_1=fracpi6+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.
п.4. Примеры
Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.
Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.
Пример 2. Решите уравнения:
a) (sin x=-1) (x=-fracpi2+2pi k) | б) (sin x=frac<sqrt>) $$ left[ begin x_1=fracpi4+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^frac +pi k $$ |
в) (sin x=0) (x=pi k) | г) (sin x=sqrt) (sqrtgt 1, xinvarnothing) Решений нет |
д) (sin x=0,7) begin left[ begin x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end | e) (sin x=-0,2) Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin left[ begin x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^arcsin(0,2) +pi k end |
Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$
Способ 1. Решение с помощью числовой окружности |
Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от (-fracpi2) до (fracpi2)).
Получаем: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$
Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4).
И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4)
Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:
(б) arcsin^2x-arcsinx-2=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin t_1=2gt fracpi2 — text\ t_2=-1 end right. $$ Возвращаемся к исходной переменной: begin arcsinx=-1\ x=sin(-1)=-sin1 end Ответ: -sin1
(в) arcsin^2x-pi arcsinx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(-pi)^2-4cdot frac=frac, sqrt=fracpi3 Rightarrow left[ begin t_1=frac=fracpi3\ t_2=frac=fracgt fracpi2 — text end right. end Возвращаемся к исходной переменной:
begin arcsinx=fracpi3\ x=sinfracpi3=frac<sqrt> end Ответ: (frac<sqrt>)
🔥 Видео
10 класс. Решение уравнений sin x = aСкачать
§34 Уравнение sin x = aСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Решение тригонометрических уравнений типа sinx=aСкачать
Уравнение sinx=aСкачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
простейшие уравнения с sinx: 1)sinx=√2/2; 2)sinx=-√3/2Скачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | ИнфоурокСкачать
Алгебра 10 класс. Тригонометрия. Уравнения: sinx=a.Скачать
Решение простейших тригонометрических уравнений sinx=aСкачать
Простейшие тригонометрические уравнения. y=sinx. 2 часть. 10 класс.Скачать
Решение уравнений вида tg x = a и ctg x = aСкачать
Решение тригонометрических уравнений: sin(x) = aСкачать