РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
- Решение тригонометрических уравнений sin x a cos x a tg x a ctg x a
- Простейшие тригонометрические уравнения
- Урок по математике на тему: «Решение простейших тригонометрических уравнений вида sinx=a, cosx=a, tgx=a, ctg=a» (I курс)
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение тригонометрических уравнений.
- Немного теории.
- Тригонометрические уравнения
- Уравнение cos(х) = а
- Уравнение sin(х) = а
- Уравнение tg(х) = а
- Решение тригонометрических уравнений
- Уравнения, сводящиеся к квадратным
- Уравнение вида a sin(x) + b cos(x) = c
- Уравнения, решаемые разложением левой части на множители
- 💥 Видео
Видео:Решения простейших тригонометрих уравнений (sin x = a, cos x = a, tg x = a, ctg x = a) #10классСкачать
Решение тригонометрических уравнений sin x a cos x a tg x a ctg x a
Простейшие тригонометрические уравнения
Тригонометрическое уравнение – это уравнение, содержащее неизвестное под знаком тригонометрической функции.
Простейшими тригонометрическими уравнениями называют уравнения вида
sin x = a, cos x = a, tg x = a, ctg x = a, где a – действительное число (a ∈ R).
Уравнение cos x = a.
Принцип:
arccos a = x.
Следовательно, cos x = a.
Условия: модуль а не больше 1; x не меньше 0, но не больше π
Формулы:
x = ± arccos a + 2πk, где k – любое целое число
arccos (-a) = π – arccos a, где 0 ≤ a ≤ 1
Пример 1 : Решим уравнение
Применим первую формулу:
Сначала находим значение арккосинуса:
√3 π
arccos —— = —
2 6
Осталось подставить этот число в нашу формулу:
Пример 2 : Решим уравнение
Сначала применим первую формулу из таблицы:
Теперь с помощью второго уравнения вычислим значение арккосинуса:
√3 √3 π π π 6π π 5π
arccos (– ——) = π – arcos —— = π – — = — – — = — – — = ——
2 2 6 1 6 6 6 6
Применяя формулу для —а, обращайте внимание на знак а: он меняется на противоположный.
Осталось подставить значение арккосинуса и решить пример:
Уравнение sin x = a.
Принцип:
arcsin a = x,
следовательно sin x = a.
Условия: модуль а не больше 1; x в отрезке [-π/2; π/2]
Формулы.
(1 из 3)
x = arcsin a + 2πk
x = π – arcsin a + 2πk
Эти две формулы можно объединить в одну:
x = (–1) n arcsin a + πn
(k – любое целое число; n – любое целое число; | a | ≤ 1)
Значение четного n: n = 2k
Значение нечетного n: n = 2k + 1
Если n – четное число, то получается первая формула.
Если n – нечетное число, то получается вторая формула.
√3
Пример 1 : Решить уравнение sin x = ——
2
Применяем первые две формулы:
√3
2) x = π – arcsin —— + 2πk
2
Находим значение арксинуса:
√3 π
arcsin —— = —
2 3
Осталось подставить это значение в наши формулы:
π 2π
2) x = π – — + 2πk = —— + 2πk
3 3
Пример 2 : Решим это же уравнение с помощью общей формулы.
Пояснение : если n будет четное число, то решение примет вид № 1; если n будет нечетным числом – то вид №2.
(2 из 3)
Для трех случаев есть и более простые решения:
Если sin x = 0, то x = πk
Если sin x = 1, то x = π/2 + 2πk
Если sin x = –1, то x = –π/2 + 2πk
Пример 1 : Вычислим arcsin 0.
Пусть arcsin 0 = x.
Тогда sin x = 0, при этом x ∈ [–π/2; π/2].
Синус 0 тоже равен 0. Значит:
Пример 2 : Вычислим arcsin 1.
Пусть arcsin 1 = x.
Число 1 на оси ординат имеет имя π/2. Значит:
(3 из 3)
arcsin (–a) = –arcsin a
Пример : Решить уравнение
√3
2) x = π – arcsin (– ——) + 2πk
2
Находим значение арксинуса:
√3 √3 π
arcsin (– ——) = – arcsin (——) = – —
2 2 3
Подставляем это значение arcsin в обе формулы:
π
1) x = – — + 2πk
3
π π 4π
2) x = π – (– —) + 2πk = π + — + 2πk = —— + 2πk
3 3 3
Уравнение tg x = a.
Принцип:
arctg a = x,
следовательно tg x = a.
Условие: x больше –π/2, но меньше π/2
(–π/2
Пример 1 : Вычислить arctg 1.
Пусть arctg 1 = x.
Тогда tg x = 1, при этом x ∈ (–π/2; π/2)
π π
x = — при этом — ∈ (–π/2; π/2)
4 4
π
Ответ : arctg 1 = —
4
Пример 2 : Решить уравнение tg x = –√3.
arctg (–√3) = –arctg √3 = –π/3.
Уравнение ctg x = a.
Принцип:
arcctg a = x,
следовательно ctg x = a.
Условие: x больше 0, но меньше π
(0 Пример 1 : Вычислить arcctg √3.
Ответ : arcctg √3 = π/6
Пример 2 : Вычислить arcctg (–1).
Применяя формулу (2), обращайте внимание на знак а: он меняется на противоположный. В нашем примере –1 меняется на 1:
arcctg (–1) = π – arcctg 1 = π – π/4 = 3π/4.
Видео:Решение уравнений вида tg x = a и ctg x = aСкачать
Урок по математике на тему: «Решение простейших тригонометрических уравнений вида sinx=a, cosx=a, tgx=a, ctg=a» (I курс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 2 500 дидактических материалов для школьного и домашнего обучения
Видеолекции для
профессионалов
- Свидетельства для портфолио
- Вечный доступ за 120 рублей
- 311 видеолекции для каждого
Алгебра. Группа 3, 4 (I курс)
Дата: 3 гр.________________
Образовательная: Повторить учебный материал, необходимый для успешного решения тригонометрических уравнений, рассмотреть методы решения простейших тригонометрических уравнений вида sinx = a , cosx = a , tgx = a , ctg = a .
Развивающая: формировать умения анализировать и делать выводы, развивать грамотную устную речь; развивать логику, формировать вычислительные, расчётные навыки, развивать мышление учащихся.
Воспитательная : о рганизация совместных действий, ведущих к активизации учебного процесса, стимулирование учеников к самооценке образовательной деятельности; Воспитание чувства самопознания, самоопределения и самореализации;
Дидактическое и методическое оснащение урока: интерактивная доска.
Тип урока: изучение нового материала.
А. Н. Колмогоров «Алгебра и начала математического анализа» 10-11.
1. Организационный момент: приветствие, проверка отсутствующих; сообщение темы урока; постановка цели урока; сообщение этапов урока.
2. Изучение нового материала: решения простейших тригонометрических уравнений вида sinx = a , cosx = a , tgx = a , ctg = a – приложение 1.
3. Закрепление изученного материала: первичное закрепление изученного материала.
4. Итог урока: систематизация и обобщение знаний, полученных на уроке.
5. Домашнее задание: инструктаж по домашнему заданию.
Страница 277. ПОДГОТОВКА К ЕГЭ 2012.
Простейшие тригонометрические уравнения.
Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его
простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.
1. Алгебраический метод. Этот метод нам хорошо известен из алгебры
( метод замены переменной и подстановки).
2. Разложение на множители. Этот метод рассмотрим на примерах.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево: sin x + cos x – 1 = 0, преобразуем и разложим на множители выражение в левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4 x cos 2 x = 2 cos ² 4 x ,
cos 4 x · ( cos 2 x – cos 4 x ) = 0 ,
cos 4 x · 2 sin 3 x · sin x = 0 ,
1). cos 4 x = 0 , 2). sin 3 x = 0 , 3). sin x = 0 ,
Приведение к однородному уравнению. Уравнение называется однородным относительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:
а ) перенести все его члены в левую часть;
б ) вынести все общие множители за скобки;
в ) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д ) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4 y +3 = 0 ,
корни этого уравнения: y 1 = 1, y 2 = 3, отсюда
1) tan x = –1, 2) tan x = –3,
4. Переход к половинному углу. Рассмотрим этот метод на примере:
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
5. Введение вспомогательного угла. Рассмотрим уравнение вида: a sin x + b cos x = c ,
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:
6. Преобразование произведения в сумму. Здесь используются соответствующие формулы.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
cos 4 x – cos 8 x = cos 4 x ,
7. Универсальная подстановка. Рассмотрим этот метод на примере.
П р и м е р . Решить уравнение: 3 sin x – 4 cos x = 3 .
Таким образом, решение даёт только первый случай.
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Калькулятор онлайн.
Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Немного теории.
Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Тригонометрические уравнения
Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Уравнение cos(х) = а
Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a
Видео:Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать
Уравнение sin(х) = а
Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а
Видео:Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)Скачать
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а
Видео:Тригонометрические уравнения с помощью окружности. tg x =aСкачать
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Видео:Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)Скачать
Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0
Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )
Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0
Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3
Видео:Решение уравнений вида sin x = a, cos x = a, tg x = a. Понятное объснение арксинуса и арккосинуса.Скачать
Уравнение вида a sin(x) + b cos(x) = c
Решить уравнение 2 sin(x) + cos(x) — 2 = 0
Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем
Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:
Видео:Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0
Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0
Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0
💥 Видео
Простейшие тригонометрические уравнения. y=cosx. 2 часть. 10 класс.Скачать
Решение тригонометрических уравнений: ctg(x) = aСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Тригонометрические уравнения. Алгебра 10 класс. cos x = a.Скачать
10 класс - Алгебра - Арктангенс и арккотангенс. Решение уравнений вида tg x = a, ctg x = aСкачать
10 класс. Решение уравнений sin x = aСкачать