Решение тригонометрических уравнений с половинным аргументом

Формулы половинного угла в тригонометрии

Формулы половинного угла (аргумента) представляют собой противоположность формулам двойного угла , так как они выражают синус, косинус, тангенс и котангенс угла α 2 при помощи тригонометрических функций угла α . В статье раскрыты формулы половинного угла и добавлены их доказательства с примерами решений.

Видео:Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Список формул половинного угла

Стандартные формулы половинного угла:

sin 2 α 2 = 1 — cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 — cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 — cos α

Формулы для sin и cos половинного угла справедливы при любом значении заданного угла α . Формулу для t g любого угла α определяет t g α 2 , значение угла α ≠ π + 2 π · z при z равном любому целому числу ( выражение 1 + cos α с таким же значением α не должно принимать значение 0 ). Формула c t g угла считается справедливой для любого угла α , где половинный угол имеет место быть, α ≠ 2 π · z .

Самые значимые формулы половинного угла для квадратов тригонометрических функций выводятся через положительное или отрицательное значение арифметического квадратного корня. Имеем формулы половинного угла:

sin α 2 = ± 1 — cos α 2 , cos α 2 = ± 1 + cos α 2 , t g α 2 = ± 1 — cos α 1 + cos α , c t g α 2 = ± 1 + cos α 1 — cos α

Знак «-» указывает, что тригонометрическая функция принадлежит определенной четверти угла α 2 .

Применим формулы на практике.

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Доказательство формул половинного угла

Доказательство формул половинного угла основывается на формулах cos двойного угла cos α = 1 — 2 · sin 2 α 2 и cos α = 2 · cos 2 α 2 — 1 . Упростив первое выражение по sin 2 α 2 , получим саму формулу половинного угла sin 2 α 2 = 1 — cos α 2 , второе выражение по cos 2 α 2 получим cos 2 α 2 = 1 + cos α 2 .

Чтобы доказать формулы половинного угла для t g и c t g угла α 2 , необходимо применить основные тригонометрические тождества t g α 2 = sin α 2 cos α 2 и c t g α 2 = cos α 2 sin α 2 , к ним необходимо добавить формулы половинного угла cos и sin , которые доказали выше. При подстановке получим выражения, имеющие вид:

t g 2 α 2 = sin 2 α 2 cos 2 α 2 = 1 — cos α 2 1 + cos α 2 = 1 — cos α 1 + cos α ; c t g 2 α 2 = cos 2 α 2 sin 2 α 2 = 1 — cos α 2 1 + cos α 2 = 1 + cos α 1 — cos α ;

Все формулы половинного угла были доказаны.

Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать

10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степени

Примеры использования

Покажем применение формул половинного угла при решении примера.

Известно, что cos 30 ° = 3 2 . Необходимо вычислить значение cos 15 градусов, используя формулы половинного угла.

Данный пример рассматривает применение формулы половинного угла для косинуса, имеющей вид cos 2 α 2 = 1 + cos α 2 .

Следуя из условия, подставляем числовые значения и получаем: cos 2 15 ° = 1 + cos 30 ° 2 = 1 + 3 2 2 = 2 + 3 4 . После получения значения косинуса 15 градусов, необходимо найти само значение косинуса. Для этого вспомним, что угол в 15 градусов принадлежит первой четверти. Там косинус угла имеет положительное значение ( чтобы вспомнить знаки тригонометрических функций, необходимо повторить теорию знаков синуса, косинуса, тангенса и котангенса по четвертям). Следуя из вышесказанного, имеем cos 2 15 ° = 2 + 3 4 , тогда cos 15 ° = 2 + 3 4 = 2 + 3 2 . Ответ: cos 15 ° = 2 + 3 2 .

Применяя формулу половинного угла, стоит учитывать тот факт, что угол может быть не явного вида α 2 и α , а потребует дальнейшего приведения к стандартному виду. Главное условие – нахождение аргумента в правой части формул половинного угла было в 2 раза больше, чем в левой. Иначе применение формулы будет невозможно.

Если формула позволит записывать данное равенство таким образом sin 2 7 α = 1 — cos 14 α 2 или sin 2 5 α 17 = 1 — cos 10 α 17 2 , то формула будет применима.

Для правильного преобразования и применения формул половинного аргумента необходимо досконально изучить свойства тригонометрических функций. Не любое выражение поддается такому преобразованию в тригонометрии. Необходимо внимательно следить за значениями углов тригонометрических функций и их нахождение в четвертях для определения знака для выражения.

Все формулы половинного угла в тригонометрии:

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение задач и уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Решение тригонометрических уравнений с половинным аргументом

На уроке рассматривается обобщенная задача по вычислению значений тригонометрических функций аргумента, половинного аргумента и удвоенного аргумента. В процессе ее решения выводятся формулы универсальной тригонометрической подстановки и рассматриваются особенности их области допустимых значений.

Видео:Косинус и синус двойного угла, часть 1. Алгебра 10 классСкачать

Косинус и синус двойного угла, часть 1. Алгебра 10 класс

Формулы двойного и половинного аргумента. Универсальная подстановка

п.1. Формулы двойного аргумента

Выведем формулы двойного аргумента, исходя из формул суммы (см. §13 и §14 данного справочника)

begin sin2alpha=sin(alpha+alpha)=sinalpha cosalpha+cosalpha sinalpha=2sinalpha cosalpha\ cos2alpha=cos(alpha+alpha)=cosalpha cosalpha-sinalpha sinalpha=cos^2alpha-sin^2alpha\ tg2alpha=tg(alpha+alpha)=frac=frac end

Умножим полученное выражение на котангенс вверху и внизу дроби, и получим еще одно полезное выражение:

Например:
Найдем (sin2alpha) и (tg2alpha), если (sinalpha=0,8, fracpi2ltalphaltpi)
Угол (alpha) во 2-й четверти, косинус отрицательный:
(cosalpha=-sqrt=-sqrt=-0,6)
(tgalpha=frac=frac=-frac43)
Синус двойного угла: (sin2alpha=2sinalpha cosalpha=2cdot 0,8cdot(-0,6)=-0,96)
Тангенс двойного угла: (tg2alpha=frac=frac=frac<1-frac>=frac83 : frac79=frac83cdotfrac97=frac=3frac37)

п.2. Формулы половинного аргумента

По формуле двойного аргумента для косинуса: (cos2alpha=2cos^2alpha-1)
Заменим слева угол (2alpharightarrow alpha), а справа угол (alpharightarrowfrac).
Получаем: begin cosalpha=2cos^2frac-1Rightarrow 2cos^2frac=1+cosalphaRightarrow cos^2frac=frac end Из другой формулы двойного аргумента для косинуса: (cos2alpha=1-2sin^2alpha), получаем: begin cosalpha=1-2sin^2fracRightarrow 2sin^2frac=1-cosalphaRightarrow sin^2frac=frac end Для квадрата тангенса и котангенса половинного угла: begin tg^2frac=frac<sin^2frac><cos^2frac>=frac, ctg^2frac=frac<tg^2frac>=frac end

п.3. Формулы универсальной подстановки

Универсальная подстановка эффективна при решении тригонометрических уравнений, а также интегрировании.

п.4. Примеры

в) ( sqrt<2+sqrt> ), где (0le alphalefracpi2) begin sqrt<2+sqrt>=sqrt<2+sqrt>=sqrt<2+sqrt>=\ =sqrt=sqrt= left[ begin sqrt, cos2alphageq 0\ sqrt, cos2alphalt 0 end right. =\ = left[ begin sqrt, 0leq 2alphaleqfracpi2\ sqrt, fracpi2lt 2alphaleq pi end right. = left[ begin 2cosalpha, 0leq alphaleqfracpi4\ 2sinalpha, fracpi4lt alphaleq fracpi2 end right. end Ответ: (2cosalpha) при (0leq alphaleqfracpi4; 2sinalpha) при (fracpi4lt alphaleq fracpi2)
г) ( 4(sin^4x+cos^4x)-4(sin^6x+cos^6x)-1 )
Основное тригонометрическое тождество: (sin^2x+cos^2x=1)
Возведём в квадрат: begin (sin^2x+cos^2x)^2=sin^4x+cos^4x+2sin^2x cos^2x=1\ sin^4x+cos^4x=1-frac=1-frac end Возведём в куб: begin (sin^2x+cos^2x)^3=sin^6x+cos^6x+3sin2x cos^4x+3sin^4x cos^2x=1\ sin^6x+cos^6x = 1-3sin^2x cos^2xunderbrace_=\ =1-frac34(2sinx cosx)^2=1-frac end

Подставляем: begin 4left(1-fracright)-4left(1-fracright)=1=4-2sin^2 2x-4+3sin^2 2x-1=\ =sin^2 2x-1=-cos^2 2x end Ответ: (-cos^2 2x)

🔥 Видео

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Встреча с Путиным в общежитии МГУ на Воробьевых горах!Скачать

Встреча с Путиным в общежитии МГУ на Воробьевых горах!

СИНУС КОСИНУС ТАНГЕНС ПОЛОВИННОГО УГЛА тригонометрияСкачать

СИНУС КОСИНУС ТАНГЕНС ПОЛОВИННОГО УГЛА тригонометрия

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Косинус и синус двойного угла, часть 2. Алгебра 10 классСкачать

Косинус и синус двойного угла, часть 2. Алгебра 10 класс

Формулы половинного угла. 9 класс.Скачать

Формулы половинного угла. 9 класс.

Тригонометрические уравнения с заменой переменных и сложным аргументом Алгебра 10 классСкачать

Тригонометрические уравнения с заменой переменных и сложным аргументом Алгебра 10 класс

Формулы приведения с нуля за 15 минут!Скачать

Формулы приведения с нуля за 15 минут!

Алгебра 10 класс (Урок№36 - Формулы половинного аргумента.)Скачать

Алгебра 10 класс (Урок№36 - Формулы половинного аргумента.)

Формулы двойного угла. 9 класс.Скачать

Формулы двойного угла. 9 класс.

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

ДВОЙНЫЕ УГЛЫ И ФОРМУЛЫ ПРИВЕДЕНИЯ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

ДВОЙНЫЕ УГЛЫ И ФОРМУЛЫ ПРИВЕДЕНИЯ 😉 #shorts #егэ #огэ #математика #профильныйегэ
Поделиться или сохранить к себе: