Продолжаем наш разговор про наиболее употребляемые формулы в тригонометрии. Важнейшие из них – формулы сложения.
Формулы сложения позволяют выразить функции разности или суммы двух углов с помощью тригонометрических функций этих углов.
Для начала мы приведем полный список формул сложения, потом докажем их и разберем несколько наглядных примеров.
- Основные формулы сложения в тригонометрии
- Доказательства формул сложения
- Способы решения тригонометрических уравнений
- Тригонометрические уравнения — формулы, решения, примеры
- Простейшие тригонометрические уравнения
- Формулы корней тригонометрических уравнений в таблице
- Методы решения тригонометрических уравнений
- Алгебраический метод.
- Разложение на множители.
- Приведение к однородному уравнению
- Переход к половинному углу
- Введение вспомогательного угла
- Дробно-рациональные тригонометрические уравнения
- 🔥 Видео
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Основные формулы сложения в тригонометрии
Выделяют восемь основных формул: синус суммы и синус разности двух углов, косинусы суммы и разности, тангенсы и котангенсы суммы и разности соответственно. Ниже приведены их стандартные формулировки и вычисления.
1.Синус суммы двух углов можно получить следующим образом:
— вычисляем произведение синуса первого угла на косинус второго;
— умножаем косинус первого угла на синус первого;
— складываем получившиеся значения.
Графическое написание формулы выглядит так: sin ( α + β ) = sin α · cos β + cos α · sin β
2. Синус разности вычисляется почти так же, только полученные произведения нужно не сложить, а вычесть друг из друга. Таким образом, вычисляем произведения синуса первого угла на косинус второго и косинуса первого угла на синус второго и находим их разность. Формула пишется так: sin ( α — β ) = sin α · cos β + sin α · sin β
3. Косинус суммы. Для него находим произведения косинуса первого угла на косинус второго и синуса первого угла на синус второго соответственно и находим их разность: cos ( α + β ) = cos α · cos β — sin α · sin β
4. Косинус разности: вычисляем произведения синусов и косинусов данных углов, как и ранее, и складываем их. Формула: cos ( α — β ) = cos α · cos β + sin α · sin β
5. Тангенс суммы. Эта формула выражается дробью, в числителе которой – сумма тангенсов искомых углов, а в знаменателе – единица, из которой вычитается произведение тангенсов искомых углов. Все понятно из ее графической записи: t g ( α + β ) = t g α + t g β 1 — t g α · t g β
6. Тангенс разности. Вычисляем значения разности и произведения тангенсов данных углов и поступаем с ними схожим образом. В знаменателе мы прибавляем к единице, а не наоборот: t g ( α — β ) = t g α — t g β 1 + t g α · t g β
7. Котангенс суммы. Для вычислений по этой формуле нам понадобятся произведение и сумма котангенсов данных углов, с которыми мы поступаем следующим образом: c t g ( α + β ) = — 1 + c t g α · c t g β c t g α + c t g β
8. Котангенс разности. Формула схожа с предыдущей, но в числителе и знаменателе – минус, а не плюс c t g ( α — β ) = — 1 — c t g α · c t g β c t g α — c t g β .
Вы, наверное, заметили, что эти формулы попарно схожи. При помощи знаков ± (плюс-минус) и ∓ (минус-плюс) мы можем сгруппировать их для удобства записи:
sin ( α ± β ) = sin α · cos β ± cos α · sin β cos ( α ± β ) = cos α · cos β ∓ sin α · sin β t g ( α ± β ) = t g α ± t g β 1 ∓ t g α · t g β c t g ( α ± β ) = — 1 ± c t g α · c t g β c t g α ± c t g β
Соответственно, мы имеем одну формулу записи для суммы и разности каждого значения, просто в одном случае мы обращаем внимание на верхний знак, в другом – на нижний.
Мы можем взять любые углы α и β , и формулы сложения для косинуса и синуса подойдут для них. Если мы можем правильно определить значения тангенсов и котангенсов этих углов, то формулы сложения для тангенса и котангенса будут также для них справедливы.
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Доказательства формул сложения
Как и большинство понятий в алгебре, формулы сложения могут быть доказаны. Первая формула, которую мы докажем, — формула косинуса разности. Из нее потом можно легко вывести остальные доказательства.
Уточним основные понятия. Нам понадобится единичная окружность. Она получится, если мы возьмем некую точку A и повернем вокруг центра (точки O ) углы α и β . Тогда угол между векторами O A 1 → и O A → 2 будет равняться ( α — β ) + 2 π · z или 2 π — ( α — β ) + 2 π · z ( z – любое целое число). Получившиеся вектора образуют угол, который равен α — β или 2 π — ( α — β ) , или он может отличаться от этих значений на целое число полных оборотов. Взгляните на рисунок:
Мы воспользовались формулами приведения и получили следующие результаты:
cos ( ( α — β ) + 2 π · z ) = cos ( α — β ) cos ( 2 π — ( α — β ) + 2 π · z ) = cos ( α — β )
Итог: косинус угла между векторами O A 1 → и O A 2 → равняется косинусу угла α — β , следовательно, cos ( O A 1 → O A 2 → ) = cos ( α — β ) .
Далее мы переходим к самому доказательству формулы косинуса разности.
Вспомним определения синуса и косинуса: синус — функция угла, равная отношению катета противолежащего угла к гипотенузе, косинус – это синус дополнительного угла. Следовательно, точки A 1 и A 2 имеют координаты ( cos α , sin α ) и ( cos β , sin β ) .
O A 1 → = ( cos α , sin α ) и O A 2 → = ( cos β , sin β )
Если непонятно, взгляните на координаты точек, расположенных в начале и конце векторов.
Длины векторов равны 1 , т.к. у нас единичная окружность.
Разберем теперь скалярное произведение векторов O A 1 → и O A 2 → . В координатах оно выглядит так:
( O A 1 → , O A 2 ) → = cos α · cos β + sin α · sin β
Из этого мы можем вывести равенство:
cos ( α — β ) = cos α · cos β + sin α · sin β
Таким образом, формула косинуса разности доказана.
Теперь мы докажем следующую формулу – косинуса суммы. Это проще, поскольку мы можем воспользоваться предыдущими расчетами. Возьмем представление α + β = α — ( — β ) . У нас есть:
cos ( α + β ) = cos ( α — ( — β ) ) = = cos α · cos ( — β ) + sin α · sin ( — β ) = = cos α · cos β + sin α · sin β
Это и есть доказательство формулы косинуса суммы. В последней строчке использовано свойство синуса и косинуса противоположных углов.
Формулу синуса суммы можно вывести из формулы косинуса разности. Возьмем для этого формулу приведения:
вида sin ( α + β ) = cos ( π 2 ( α + β ) ) . Так
sin ( α + β ) = cos ( π 2 ( α + β ) ) = cos ( ( π 2 — α ) — β ) = = cos ( π 2 — α ) · cos β + sin ( π 2 — α ) · sin β = = sin α · cos β + cos α · sin β
А вот доказательство формулы синуса разности:
sin ( α — β ) = sin ( α + ( — β ) ) = sin α · cos ( — β ) + cos α · sin ( — β ) = = sin α · cos β — cos α · sin β
Обратите внимание на использование свойств синуса и косинуса противоположных углов в последнем вычислении.
Далее нам нужны доказательства формул сложения для тангенса и котангенса. Вспомним основные определения (тангенс – отношение синуса к косинусу, а котангенс –наоборот) и возьмем уже выведенные заранее формулы. У нас получилось:
t g ( α + β ) = sin ( α + β ) cos ( α + β ) = sin α · cos β + cos α · sin β cos α · cos β — sin α · sin β
У нас получилась сложная дробь. Далее нам нужно разделить ее числитель и знаменатель на cos α · cos β , учитывая что cos α ≠ 0 и cos β ≠ 0 , получаем:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β — sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β — sin α · sin β cos α · cos β
Теперь сокращаем дроби и получаем формулу следующего вида: sin α cos α + sin β cos β 1 — sin α cos α · s i n β cos β = t g α + t g β 1 — t g α · t g β .
У нас получилось t g ( α + β ) = t g α + t g β 1 — t g α · t g β . Это и есть доказательство формулы сложения тангенса.
Следующая формула, которую мы будем доказывать – формула тангенса разности. Все наглядно показано в вычислениях:
t g ( α — β ) = t g ( α + ( — β ) ) = t g α + t g ( — β ) 1 — t g α · t g ( — β ) = t g α — t g β 1 + t g α · t g β
Формулы для котангенса доказываются схожим образом:
c t g ( α + β ) = cos ( α + β ) sin ( α + β ) = cos α · cos β — sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β — sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β — 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = — 1 + c t g α · c t g β c t g α + c t g β
Далее:
c t g ( α — β ) = c t g ( α + ( — β ) ) = — 1 + c t g α · c t g ( — β ) c t g α + c t g ( — β ) = — 1 — c t g α · c t g β c t g α — c t g β
Примеры сложения с помощью тригонометрических формул
В этом пункте мы рассмотрим, как применить эти сложные на вид вычисления на практике. Их можно использовать:
— при преобразовании тригонометрических выражений;
— для вычисления точных значений синуса, косинуса, тангенса и котангенса углов, которые отличаются от основных ( 0 , π 6 , π 4 , π 3 , π 2 );
— для доказательства других тригонометрических формул, например, формулы двойного угла.
Разберем задачи с использованием формул сложения.
Задача: Вычислите точное значение тангенса 15 градусов.
Решение
Для наглядности мы 15 градусов можно представить в виде разности 45 — 30 . В этом случае решение задачи можно получить с помощью формулы тангенса разности. Возьмем формулу, которую мы приводили выше, и укажем в ней имеющиеся нам известные значения: t g 15 ° = t g ( 45 ° — 30 ° ) = t g 45 ° — t g 30 ° 1 + t g 45 ° · t g 30 °
Вычисляем ответ: t g 45 ° — t g 30 ° 1 + t g 45 ° · t g 30 ° = 1 — 3 3 1 + 1 · 3 3 = = 3 — 1 3 + 1 = ( 3 — 1 ) · ( 3 — 1 ) ( 3 + 1 ) · ( 3 — 1 ) = ( 3 ) 2 — 2 3 + 1 ( 3 ) 2 — 1 = 2 — 3
Ответ: t g 15 ° = 2 — 3
Задача: Выберем формулу сложения для проверки формулы приведения следующего вида: sin ( π 2 + α ) = cos α
Нам подойдет формула синуса суммы. Итого: sin ( π 2 + α ) = sin π 2 · cos α + cos π 2 · sin α = 1 · cos α + 0 · sin α = cos α
Ответ: sin ( π 2 + α ) = cos α — наша формула доказана.
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Способы решения тригонометрических уравнений
Министерство образования и молодёжной политики Чувашской Республики
Муниципальное образовательное учреждение
«Средняя общеобразовательная школа №6 г. Чебоксары»
Способы решения тригонометрических уравнений
МОУ «Средняя общеобразовательная школа №6
Методическая разработка по теме «Способы решения тригонометрических уравнений». В средней школе на изучение данной темы отводится незначительное количество часов. Эта разработка изучит, расширит и углубит математические знания по данной теме.
На экзаменах по математике для поступающих в ВУЗы, олимпиадах часто встречаются задания на решение тригонометрических уравнений.
Все приводимые способы направлены на развитие познавательного интереса к предмету, знакомящие учащихся с новыми идеями и методами, расширяющие представления об изучаемой теме в основной школе.
Уравнения, предлагаемые в данной разработке, интересны, красивы, носят прикладной характер, что позволяет повысить учебную мотивацию учащихся и интерес к предмету и вызвать желание узнать больше.
Основные цели методической разработки:
· знакомство учащихся с основными приемами и методами решения тригонометрических уравнений;
· развитие навыков применения теоретических сведений по данной теме на практике в различных проявлениях;
· развитие творческих способностей;
· повышение интереса к предмету;
· повторение и обобщение знаний по теме «Способы решения тригонометрических уравнений;
· оказание помощи учащимся систематизировании уравнений и нахождении рациональных приемов решения.
Особенность методической разработки.
Использование материала в работе даст положительные результаты при подготовке школьников к сдаче ЕГЭ по математике.
1. Уравнения, приводимые к алгебраическим. . . . . . . . . . . . .. . . . . . . . . . . . . . . .4
2. Уравнения, решаемые разложением на множители. . . . . . . . . . . . . . . . . . . . . .5
3. Однородные уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Уравнения, решаемые с помощью формул сложения тригонометрических функций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6. Уравнения, решаемые с помощью формул понижения степени. . . . . . . . . . . .8
7. Уравнения вида .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
8. Уравнения смешанного типа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9. Задания для промежуточного и итогового контроля результатов обучения. .13
10. Тригонометрическое уравнение на ЕГЭ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1. Уравнение .
Если для любого t. Если , то формула корней уравнения такова:
2. Уравнение .
При уравнение не имеет решений, так как для любого . Если |a|≤1,то формула для записи всех решений уравнения такова: Удобно записывать не двумя, а одной формулой:
3. Уравнение . Решение данного уравнения имеет вид:.
4. Уравнение . Решение данного уравнения имеет вид:
Способы решения тригонометрических уравнений.
I. Уравнения, приводимые к алгебраическим
Пример. Решить уравнение
Решение. Воспользуемся тем, что . Тогда заданное уравнение можно переписать в виде . После понятных преобразований получим . Введем новую переменную . Тогда уравнение примет вид , откуда находим . Значит,. Из этих уравнений находим, соответственно,
Уравнения для самостоятельного решения:
II. Уравнения, решаемые разложением на множители
Смысл этого метода: если уравнение удается преобразовать к виду , то задача сводится к решению двух уравнений, то есть к решению совокупности уравнений: .
Пример. Решить уравнение .
Решение. Имеем . Значит, приходим к совокупности уравнений . Из первого уравнения находим . Из второго уравнения находим .
Уравнения для самостоятельного решения:
III. Однородные уравнения.
Определение. Уравнение вида, где называют однородным тригонометрическим уравнением первой степени, уравнение вида ¸называют однородным тригонометрическим уравнением второй степени.
Итак, дано уравнение . Разделив обе части уравнения почленно на , получим .
Но, внимание! Делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в рассматриваемом случае отличен от 0? Давайте проанализируем. Предположим, что cos x =0. Тогда однородное уравнение asinx+bcosx=0 примет вид asinx=0¸ то есть sinx=0¸ так как a≠0. Получается, что и cosx=0¸ и sinx=0¸ а это невозможно, так как sinx и cosx обращается в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения на cosx— вполне благополучная операция.
Пример 1. Решить уравнение 2sinx-3cosx= 0.
Решение. Разделим обе части уравнения почленно на cosx¸ получим . Рассмотрим теперь однородное тригонометрическое уравнение второй степени . Если коэффициент a отличен от нуля, то есть в уравнении содержится член sin2x с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной cos x не обращается в нуль, а потому можно обе части уравнения разделить почленно на .
Это — квадратное уравнение относительно новой переменной z= tgx .
Пример 2. Решить уравнение .
Решение. Разделим обе части уравнения почленно на cos2 x, получим Введя новую переменную получим, . Откуда находим z=1, z=2. Значит, либо tgx=1, либо tgx=2. Из первого уравнения находим Из второго уравнения находим .
Уравнения для самостоятельного решения:
IV. Уравнения, решаемые с помощью формул сложения тригонометрических функций.
позволяют сумму или разность синусов или косинусов разложить на множители.
Пример. Решить уравнения: sin5x + sinx=0;
Решение. Преобразовав сумму синусов в произведение, получим
Значит, либо , откуда находим , либо cos2x=0, откуда находим
Уравнения для самостоятельного решения:
V. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму
при решении тригонометрических уравнений.
Уравнения для самостоятельного решения:
VI. Уравнения, решаемые с помощью формул понижения степени
Пример. Решить уравнение
Уравнения для самостоятельного решения:
VII. Уравнения вида
Преобразование выражения Итак, Аналогично можно выражение преобразовать к виду .
Пример.
Здесь Имеем Введём вспомогательный аргумент , удовлетворяющий соотношениям например, . Тогда
Уравнения для самостоятельного решения:
VIII. Уравнения смешанного типа
1. Решите уравнения:
Выбор корней проведём на тригонометрической окружности
y
Ответ:
а)
Ответ:
в)
Ответ:
б)
Ответ:
г)
Ответ:
2. Решите уравнения.
y
Не удовлетворяет условию
Выберем те значения x, которые удовлетворяют условию
Ответ:
а)
Ответ:
в)
Ответ:
б)
Ответ:
г)
Ответ:
3. Решите уравнение.
Данное уравнение равносильно системе:
Решим второе уравнение системы:
не удовлетворяет условию
Выберем те значения х, которые удовлетворяют условию .
Ответ:
4. Решите уравнения.
Число корней на .
Выбор корней проведём на тригонометрической окружности.
Число решений на равно 5.
а)
Найти число решений на .
б) .
Найти число решений на
в)
Найти число решений на .
г) .
Найти число решений на .
5. Основной идеей решения следующих заданий является выражение синуса или косинуса через тангенс или котангенс половинного аргумента (или наоборот). При этом следует иметь в виду, что в формулах область определения «левых частей» равенств – все действительные числа, а область определения «правых частей» — .
Поэтому переход от одного уравнения к другому с использованием этих формул, вообще говоря, сужает ОДЗ на множество π.
Аналогичная ситуация с формулами
Вообще, использование формул, у которых ОДЗ «левых» и «правых» частей не совпадают, может привести либо к потере, либо к появлению посторонних корней.
Примерами таких формул являются:
Ответ:
а) . Ответ: .
в) .
Ответ: .
б) . Ответ: .
г) .
Ответ: .
IX. Задания для промежуточного контроля результатов обучения (ответы даны в скобках).
Уравнения, приводимые к алгебраическим.
Уравнения, решаемые способом разложения на множители.
Уравнения, решаемые с помощью формул сложения тригонометрических функций.
Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму.
Уравнения, решаемые с помощью формул понижения степени.
Уравнения вида .
Уравнения смешанного типа.
1.
2.Найти наименьший корень уравнения на интервале
3.
Тест. Решение тригонометрических уравнений.
1. Найдите корни уравнения на интервале .
а) ; б) ; в) .
2. Найдите наибольший отрицательный корень уравнения
а) ; б) ; в) .
3. Решите уравнение: и найдите сумму корней, принадлежащих интервалу
а) ; б) ; в) .
4. Решите уравнение: и найдите сумму корней, принадлежащих интервалу .
а) ; б) ; в) .
Задания для итогового контроля результатов обучения.
1. Решите уравнения:
а) ; б) ;
в) ; г) ;
д) ; е) .
2. Найдите сумму корней управления
на промежутке .
3. Укажите количество корней уравнения
4. Решите уравнения:
а) ;
б) .
1. а) ; б) ; в) ; г) ;
д) ; е) . 2. 16. 3. 3. 4. а) ;
б) .
X. Тригонометрическое уравнение на ЕГЭ.
Решите уравнение . (С2,2007г.)
ОДЗ уравнения:
Используя способ разложения на множители, получим
или .
не удовлетворяет условию ОДЗ уравнения.
.
Используя способ решения однородного уравнения первой степени, получим:
С учетом ОДЗ уравнения решение данного уравнения имеет вид:
1. , , . Углубленное изучение курса алгебры и математического анализа для 10-11 класса, Москва, Просвещение, 1997 г.
2. , . Факультативный курс по математике: Решение задач: Учебное пособие для 11 кл. средней школы – М., Просвещение, 1999.
3. Журнал «Математика в школе», 2006, № 10.
4. , , . Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Математика. – М. Интеллект-Центр, 2002-2007 г.
5. . Математика. Гтовимся к ЕГ, 2005.
6. . Алгебра и начала анализа; Учебник для 10-11 кл. средней школы – 2-е изд. – М. Просвещение, 2000.
7. , , . Алгебра и начала анализа: Учебник для 10-11 кл. средней школы – 4-е изд. – М. Просвещение, 2002.
8. и др. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. Ч2: Задач. Для общеобразоват. учреждений.- 5-е изд.-М.:Мнемозина,2004.
Видео:Формулы приведения - как их легко выучить!Скачать
Тригонометрические уравнения — формулы, решения, примеры
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| leq 1` имеет бесконечное множество решений.
Формула корней: `x=pm arccos a + 2pi n, n in Z`
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + pi n, n in Z`
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + pi n, n in Z`
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Формулы корней тригонометрических уравнений в таблице
Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:
Видео:12 часов Тригонометрии с 0.Скачать
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,
делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.
Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
- `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.
Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a<sqrt >=cos varphi`, ` frac b<sqrt > =sin varphi`, `frac c<sqrt >=C`, тогда:
`cos varphi sin x + sin varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt `, получим:
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos varphi sin x+sin varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `frac =1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=pi n`, `n in Z`
- `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.
Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.
Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
🔥 Видео
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать
Решение тригонометрических уравнений и их систем. 10 класс.Скачать
Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать
Решение тригонометрических уравнений. 10 класс.Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
ДВОЙНЫЕ УГЛЫ И ФОРМУЛЫ ПРИВЕДЕНИЯ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Формулы приведения с нуля за 15 минут!Скачать
Тригонометрия в ЕГЭ может быть простойСкачать
Решение тригонометрических уравнений. Вебинар | МатематикаСкачать
ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать