Разделы: Математика
Тема “Тригонометрические неравенства” является объективно сложной для восприятия и осмысления учащимися 10-го класса. Поэтому очень важно последовательно, от простого к сложному формировать понимание алгоритма и вырабатывать устойчивый навык решения тригонометрических неравенств.
Успех освоения данной темы зависит от знания основных определений и свойств тригонометрических и обратных тригонометрических функций, знания тригонометрических формул, умения решать целые и дробно-рациональные неравенства, основные виды тригонометрических уравнений.
Особый упор нужно делать на методике обучения решения простейших тригонометрических неравенств, т.к. любое тригонометрическое неравенство сводится к решению простейших неравенств.
Первичное представление о решении простейших тригонометрических неравенств предпочтительно вводить, используя графики синуса, косинуса, тангенса и котангенса. И только после учить решать тригонометрические неравенства на окружности.
Остановлюсь на основных этапах рассуждения при решении простейших тригонометрических неравенств.
- Находим на окружности точки, синус (косинус) которых равен данному числу.
- В случае строгого неравенства отмечаем на окружности эти точки, как выколотые, в случае нестрогого – как заштрихованные.
- Точку, лежащую на главном промежутке монотонности функции синус (косинус), называем Рt1, другую точку – Рt2.
- Отмечаем по оси синусов (косинусов) промежуток, удовлетворяющий данному неравенству.
- Выделяем на окружности дугу, соответствующую данному промежутку.
- Определяем направление движения по дуге (от точки Рt1 к точке Рt2по дуге), изображаем стрелку по направлению движения, над которой пишем знак “+” или “-” в зависимости от направления движения. (Этот этап важен для контроля найденных углов. Ученикам можно проиллюстрировать распространенную ошибку нахождения границ интервала на примере решения неравенства по графику синуса или косинуса и по окружности).
- Находим координаты точек Рt1 (как арксинус или арккосинус данного числа)и Рt2т.е. границы интервала, контролируем правильность нахождения углов, сравнивая t1и t2.
- Записываем ответ в виде двойного неравенства (или промежутка) от меньшего угла до большего.
Рассуждения при решении неравенств с тангенсом и котангенсом аналогичны.
Рисунок и запись решения, которые должны быть отражены в тетради у учеников, приведены в предлагаемом конспекте.
Конспект урока по теме: “Решение тригонометрических неравенств”.
Задача урока – продолжить изучение решения тригонометрических неравенств, содержащих функции синус и косинус, перейти от простейших неравенств к более сложным.
Оборудование: графопроектор, раздаточные карточки с готовыми чертежами тригонометрических кругов, переносная доска, карточки с домашним заданием.
Форма организации обучения – урок. Методы обучения, используемые на уроке – словесные, наглядные, репродуктивные, проблемно-поисковые, индивидуального и фронтального опроса, устного и письменного самоконтроля, самостоятельной работы.
Этапы урока
Содержание
Организация класса на работу.
Проверка домашнего задания.
(Сбор тетрадей с домашней работой)
Формулировка цели урока.
– Сегодня на уроке повторим решение простейших тригонометрических неравенств и рассмотрим более сложные случаи.
Устная работа.
(Задания и ответы записаны на кодоскопной ленте, открываю ответы по ходу решения)
- Решить тригонометрические уравнения:
sinx = —, 2sinx =, sin2x = , sin(x – ) = 0, cosx = ,
cosx = —, cos2x = 1, tgx = -1.
Повторение.
– Вспомним алгоритм решения простейших тригонометрических неравенств.
(На доске – заготовки двух окружностей. Вызываю по одному двух учащихся для решения неравенств.Ученик подробно объясняет алгоритм решения.Класс работает совместно с отвечающими у доски на заранее подготовленных карточках с изображением окружности).
1) sinx —;
t1 = arccos(-) = p – arccos =
= p – = ;
t2 = —;
— + 2p n t2;
t1 = arcsin = ;
t2 = -p — = —;
+ 2p n 2 2x – 2cos2x 0.
(Вспомним прием решения тригонометрических уравнений вынесением общего множителя за скобку).
cos2x(cos2x – 2) 0.
Замена: cos2x = t, 1; t(t – 2) 0; Второе неравенство не удовлетворяет условию 1.
cos2x 0. (Решить неравенство самостоятельно. Проверить ответ).
Ответ: + p n 2 x – 5sinx + 1 0.
(Вспомним прием решения тригонометрических уравнений заменой переменной. У доски решает ученик с комментариями).
Замена sinx = t, 1. 6t 2 – 5t +1 0, 6(t – )(t – ),
Ответ: + 2p n х + 2p n, -p -arcsin+ 2p k х arcsin+ 2p k, n, k Z.
№3. sinx + cos2x> 1.
(Обсуждаем варианты решения. Вспоминаем фомулу косинуса двойного угла. Класс решает самостоятельно, один ученик – на индивидуальной доске с последующей проверкой).
sinx + cos2x – 1> 0, sinx – 2sin 2 x> 0, sinx(1 – 2sinx) > 0,
2p n 2 + () 2 = 1, то существует такой угол , что cos = , а sin = . Перепишем предыдущее неравенство в виде: sin(x + ) . Последнее неравенство, а, значит, и исходное неравенство имеет хотя бы одно решение при каждома таком, что -1, то есть при каждом а -5. Ответ: а -5.
Домашнее задание.
(Раздаю карточки с записью домашнего задания.Комментирую решение каждого неравенства).
- cosx > sin 2 x;
- 4sin2xcos2x 2 sin 2 – 0,5;
- sinx + cosx > 1.
Повторить тригонометрические формулы сложения, подготовиться к самостоятельной работе.
Подведение итогов, рефлексия.
– Назовите приемы решения тригонометрических неравенств.
– Каким образом знание алгоритма решения простейших тригонометрических неравенств используется при решении более сложных неравенств?
– Какие неравенства вызвали наибольшее затруднение?
(Оцениваю работу учащихся на уроке).
Самостоятельная работа
по результатам освоения материала
Вариант 1
Решите неравенства 1 – 3:
- sin3x – 2 x + 3cosx > 0;
- coscos2x – sinsin2x —.
- Определите все а, при каждом из которых неравенство 12sinx + 5cosx а имеет хотя бы одно решение.
Вариант 2
Решите неравенства 1 – 3:
- 2cos> 1;
- sin 2 x – 4sinx
- Решение тригонометрических уравнений и неравенств конспект кратко
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- Тригонометрические неравенства и методы их решения
- 🌟 Видео
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Решение тригонометрических уравнений и неравенств конспект кратко
Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Методы решения тригонометрических уравнений.
Видео:Как решать тригонометрические неравенства?Скачать
1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Решение тригонометрических неравенств. 10 класс.Скачать
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:Решение тригонометрических неравенств. 10 класс.Скачать
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Тригонометрические неравенства и методы их решения
Тригонометрическими неравенствами называются неравенства, которые содержат переменную под знаком тригонометрической функции.
Методы решений неравенств:
- Решение тригонометрических неравенств с помощью единичной окружности.
- Графическое решение тригонометрических неравенств.
- Решение неравенств методом интервалов.
При решении более сложных тригонометрических неравенств пользуются двумя основными приемами:
I. Данное неравенство с помощью равносильных преобразований сводится к простейшим тригонометрическим неравенствам. При выполнении преобразований пользуются теми же приемами, что и при решении тригонометрических уравнений.
II. Применяется метод интервалов для определения числовых промежутков, в которых содержатся решения неравенства. Предварительно решается соответствующее тригонометрическое уравнение и устанавливаются интервалы знакопостоянства с учетом области определения неравенства.
Неравенство (sinx>a)
- При (|a|≥1) неравенство (sinx>a) не имеет решений: (xin varnothing) .
- При (a решением неравенства (sinx>a) является любое действительное число: (xin mathbb R) .
- При (−1≤a решение неравенства (sinx>a) выражается в виде (arcsin a + 2pi n .
Неравенство (sinx≥a)
Неравенство (sinx
Неравенство (sinx≤a)
Неравенство (cosx>a)
- При (a≥1) неравенство (cosx>a) не имеет решений: (xin varnothing) .
- При (a решением неравенства (cosx>a) является любое действительное число: (xin mathbb R) .
- При (−1≤a решение неравенства (cosx>a) имеет вид (-arccos a + 2pi n .
Неравенство (cosx≥a)
Неравенство (cosx
Неравенство (cosx≤a)
Неравенство (tgx>a)
При любом действительном значении (a) решение строгого неравенства (tgx>a) имеет вид (arctg a + pi n .
Неравенство (tgx≥a)
Для любого значения (a) решение неравенства (tgx≥a) выражается в виде (arctg a + pi n le x .
Неравенство (tgx
Для любого значения (a) решение неравенства (tgx записывается в виде (-frac2 + pi n .
Неравенство (tgx≤a)
При любом (a) неравенство (tgx≤a) имеет следующее решение: (-frac2 + pi n .
Неравенство (ctgx>a)
При любом (a) решение неравенства (ctgx>a) имеет вид (pi n .
Неравенство (ctgx≥a )
Нестрогое неравенство (ctgx≥a) имеет аналогичное решение (pi n .
Неравенство (ctgx
Для любого значения (a) решение неравенства (ctgx лежит в открытом интервале (arcctg a + pi n .
Неравенство (ctgx≤a)
При любом (a) решение нестрогого неравенства (ctgx≤a) находится в полуоткрытом интервале (arcctg a + pi n le x .
Пример. Решите неравенство: (cosx>frac12) .
Решение: Данное неравенство можно решить двумя способами: графически и с помощью единичного круга. Рассмотрим каждый из способов.
Первый способ. Изобразим в одной системе координат функции, описывающие левую и правую части неравенства, то есть (y=cosx и y=frac12) . Выделим промежутки, на которых график функции косинус (y=cosx) расположен выше графика прямой (y=frac12) .
Найдем абсциссы точек (x_1 и x_2) – точек пересечения графиков функций (y=cosx и y=frac12) , которые являются концами одного из промежутков, на котором выполняется указанное неравенство: (x_1=-arccosfrac12=-frac3; x_2=arccosfrac12=frac3) .
Учитывая, что косинус – функция периодическая, с периодом (2pi) , ответом будут значения x из промежутков ((-frac3+2pi k;frac3+2pi k), kin Z) .
Второй способ. Построим единичную окружность и прямую (x=frac12) (так как на единичной окружности косинусам отвечает ось абсцисс). Обозначим (P_ и P_) – точки пересечения прямой и единичной окружности. Решением исходного уравнения будет множество точек абсциссы, которых меньше (frac12) . Найдем значение (x_1 и x_2) , совершая обход против часовой стрелки так, чтобы (x_1 :
Учитывая периодичность косинуса, окончательно получим интервалы ((-frac3+2pi k;frac3+2pi k), kin Z) .
🌟 Видео
ТРИГОНОМЕТРИЧЕСКИЕ НЕРАВЕНСТВА 10 класс тригонометрияСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Решение тригонометрических неравенств. 10 класс.Скачать
Решение тригонометрических неравенств. 10 класс.Скачать
Тригонометрия для Чайников, 10 класс, Уравнения, Урок 7Скачать
Решение тригонометрических уравнений и их систем. 10 класс.Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Решение тригонометрических неравенств. 10 класс.Скачать
Решение тригонометрических неравенств. 10 класс.Скачать
Математика это не ИсламСкачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать