Решение тригонометрических уравнений и неравенств арксинус арккосинус

Уравнения и неравенства, содержащие обратные тригонометрические функции

Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.

Вначале напомним важнейшие свойства обратных тригонометрических функций.

1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];

arcsin (– x) = – arcsin x (x О [– 1; 1]);
Решение тригонометрических уравнений и неравенств арксинус арккосинус

2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];

3 Функция y = arctg x определена и монотонно возрастает на R;

arctg (– x) = – arctg x (x О R);
Решение тригонометрических уравнений и неравенств арксинус арккосинус

4 Функция y = arcctg x определена и монотонно убывает на R;

5

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.

I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.

1 .

Решение тригонометрических уравнений и неравенств арксинус арккосинус

2 .

Решение тригонометрических уравнений и неравенств арксинус арккосинус

3 .

4 .

Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).

Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).

Решение. Уравнение равносильно системе

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.

Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).

Решение. Неравенство равносильно следующему:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 3. Решить неравенство 3arcsin 2x

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .

Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:

arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Аналогичные равносильные преобразования используются и при решении задач с параметрами.

Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.

Решение. Уравнение равносильно уравнению

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Рассмотрим два случая:

1) a = 0. В этом случае система примет вид: Решение тригонометрических уравнений и неравенств арксинус арккосинус

2) a № 0. В этом случае уравнение системы является квадратным. Его корни: Решение тригонометрических уравнений и неравенств арксинус арккосинус
Так как | x | Ј 1, то Решение тригонометрических уравнений и неравенств арксинус арккосинус . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.

Ответ: при Решение тригонометрических уравнений и неравенств арксинус арккосинус при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).

Решение. Неравенство равносильно системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > Решение тригонометрических уравнений и неравенств арксинус арккосинус первое неравенство системы равносильно неравенству x і 1, при a Решение тригонометрических уравнений и неравенств арксинус арккосинус – неравенству x Ј 1, при a = Решение тригонометрических уравнений и неравенств арксинус арккосинус решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.

Решение тригонометрических уравнений и неравенств арксинус арккосинусОтвет: при | a | > Решение тригонометрических уравнений и неравенств арксинус арккосинусрешений нет; при a = – Решение тригонометрических уравнений и неравенств арксинус арккосинусx = 1;

Решение тригонометрических уравнений и неравенств арксинус арккосинус

II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)

Рассуждая аналогично, можно получить следующие переходы:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 9. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень Решение тригонометрических уравнений и неравенств арксинус арккосинус является посторонним.

Пример 10. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень x = – 2 является посторонним.

Ответ: . Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корни вида Решение тригонометрических уравнений и неравенств арксинус арккосинус являются посторонними.

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.

Пример 12. Решить неравенство Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Рассмотрим функцию Решение тригонометрических уравнений и неравенств арксинус арккосинус

и решим неравенство f(x) Ј 0 методом интервалов.

1) Найдем D(f). Для этого решим систему

Решение тригонометрических уравнений и неравенств арксинус арккосинус

2) Найдем нули f(x). Для этого решим уравнение

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень x = – 2 является посторонним.

3) Решим неравенство f(x) Ј 0 методом интервалов.

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 4. Заметим, что найдя корень уравнения Решение тригонометрических уравнений и неравенств арксинус арккосинус можно было не обращаться к методу интервалов, а воспользоваться тем, что функция Решение тригонометрических уравнений и неравенств арксинус арккосинус является монотонно возрастающей, а функция Решение тригонометрических уравнений и неравенств арксинус арккосинус монотонно убывающей на отрезке Решение тригонометрических уравнений и неравенств арксинус арккосинус . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2xa).

Решение. Данное уравнение равносильно системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: при любом a Решение тригонометрических уравнений и неравенств арксинус арккосинус

III. Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 14. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Обозначим Решение тригонометрических уравнений и неравенств арксинус арккосинус После преобразований получим уравнение

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Поскольку Решение тригонометрических уравнений и неравенств арксинус арккосинус

откуда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.

Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Поскольку Решение тригонометрических уравнений и неравенств арксинус арккосинус откуда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: [– 1; cos 2] И [cos 1; 1].

Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 16. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Данное уравнение равносильно следующему:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пусть arcsin x = t, Решение тригонометрических уравнений и неравенств арксинус арккосинус

Тогда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций

Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.

Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.

Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.

Теорема 3. Если Решение тригонометрических уравнений и неравенств арксинус арккосинус то на множестве X уравнение f(x) = g(x) равносильно
системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.

Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.

Пример 18. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Пусть x 2 + x = t. Тогда уравнение примет вид Решение тригонометрических уравнений и неравенств арксинус арккосинус

Функции Решение тригонометрических уравнений и неравенств арксинус арккосинусявляются монотонно возрастающими. Поэтому функция Решение тригонометрических уравнений и неравенств арксинус арккосинустакже является монотонно возрастающей. В силу теоремы 1 уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинусимеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0 Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 19. Решить неравенство Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке Решение тригонометрических уравнений и неравенств арксинус арккосинусфункцию Решение тригонометрических уравнений и неравенств арксинус арккосинусУравнение Решение тригонометрических уравнений и неравенств арксинус арккосинусв силу теоремы 1 имеет не более одного корня. Очевидно, что Решение тригонометрических уравнений и неравенств арксинус арккосинус– корень этого уравнения. Поэтому решением неравенства Решение тригонометрических уравнений и неравенств арксинус арккосинусявляется отрезок Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .

Решение. Поскольку arcsin Решение тригонометрических уравнений и неравенств арксинус арккосинусто левая часть уравнения не превосходит Решение тригонометрических уравнений и неравенств арксинус арккосинусЗнак равенства возможен, лишь если каждое слагаемое левой части равно Решение тригонометрических уравнений и неравенств арксинус арккосинус. Таким образом, уравнение равносильно системе:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение последней системы не представляет труда.

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Алгебра

План урока:

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства

Арксинус, арккосинус, арктангенс и арккотангенс — обратные тригонометрические функции. Они обладают рядом свойств, которые мы рассмотрим в этой статье. Помимо словесных и математических формулировок основных свойств арксинуса, арккосинуса, арктангенса и арккотангенса, будут приведены доказательства этих свойств.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса

Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа

  • sin a r c sin a = a , a ∈ 1 ; — 1 ;
  • cos a r c cos a = a , a ∈ 1 ; — 1 ;
  • t g ( a r c t g a ) = a , a ∈ — ∞ ; + ∞ ;
  • c t g ( a r c c t g a ) = a , a ∈ — ∞ ; + ∞ .

Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.

Рассмотрим доказательство на примере арксинуса. Согласно определению, арксинус числа — это такой угол или число, синус которого равен числу a . При этом число a лежит в пределах от — 1 до + 1 включительно. В виде формулы определение запишется так:

sin ( a r c sin a ) = a

Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.

Пример 1. Свойства обратных тригонометрических функций

sin ( a r c sin ( 0 , 3 ) = 0 , 3 cos a r c cos — 3 2 = — 3 2 t g ( a r c t g ( 8 ) ) = 8 c t g ( a r c c t g ( 15 8 9 ) ) = 15 8 9

Важно отметить, что для обратных функций синуса и косинуса имеет место ограничение для значений числа a . Так, при a , лежащем вне пределов отрезка — 1 , 1 , арксинус и арккосинус не определены и записи a r c sin a и a r c cos a попросту не имеют смысла. Это связано с тем, что область значений синуса и косинуса — от минус единицы до плюс единицы. Например, нельзя записать cos ( a r c cos ( 9 ) ) , так как 9 больше 1 и данное выражение не имеет смысла. Делать подобные записи — ошибочно!

Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел

Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.

arcsin, arccos, arctg и arcctg противоположных чисел

  • a r c sin — a = — a r c sin a , a ∈ — 1 , 1 ;
  • a r c cos — a = π — a r c cos a , a ∈ — 1 , 1 ;
  • a r c t g — a = — a r c t g a , a ∈ — ∞ , + ∞ ;
  • a r c c t g — a = π — a r c c t g a , a ∈ — ∞ , + ∞ .

Докажем записанное. Начнем, как всегда, с доказательства для арксинусов. При — 1 ≤ a ≤ 1 имеет место равенство a r c sin — a = — a r c sin a . Согласно дефиниции, a r c sin ( — a ) — это угол (число) в пределах от — π 2 до π 2 , синус которого равен — a . Для доказательства справедливости первого равенства необходимо доказать, что — a r c sin a лежит в тех же пределах от — π 2 до π 2 , что и a r c sin ( — a ) . Также необходимо обосновать, что sin ( — a r c sin a ) = — a .

Для арксинуса, по определению, справедливо двойное неравенство — π 2 ≤ a r c sin a ≤ π 2 . Умножим каждую часть неравенства на — 1 и получим эквивалентное неравенство π 2 ≥ — a r c sin a ≥ — π 2 . Переписав его, получим — π 2 ≤ — a r c sin a ≤ π 2 .

Переходим ко второй части доказательства. Теперь осталось показать, что sin ( — a r c sin a ) = — a . Для этого воспользуемся свойством синусов противоположных углов и запишем: sin — a r c sin a = — sin a r c sin a . С учетом свойства арксинуса, рассмотренного в предыдущем пункте, закончим доказательство.

sin — a r c sin a = — sin a r c sin a = — a

Доказательство свойства арксинусов противоположных чисел завершено.

Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.

Для того, чтобы доказать, что a r c cos — a = π — a r c cos a при a ∈ — 1 , 1 необходимо во-первых показать, что число undefined.

Для арккосинуса, по определению, справедливо двойное неравенство 0 ≤ a r c cos a ≤ π . Умножив каждую часть неравенства на — 1 и поменяв знаки, получим эквивалентное неравенство 0 ≥ — a r c cos a ≥ — π . Перепишем его в другом виде. По свойствам неравенств, можно добавить к каждой части слагаемое, не меняя знаков. Добавим в каждую часть неравенства слагаемое π . Получим π ≥ π — a r c cos a ≥ 0 , или 0 ≤ π — a r c cos a ≤ π .

Теперь покажем, что cos π — arccos a = — a . Для этого воспользуемся формулами приведения, согласно которым можно записать cos π — arccos a = — cos ( a r c cos a ) . Обратившись к свойству арккосинуса, разобранному ранее (см. 1 пункт), заканчиваем доказательство.

cos π — arccos a = — cos ( a r c cos a ) = — a .

Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.

Основная польза данного свойства — возможность избавиться от операций с отрицательными числами при работе с арксинусами, арккосинусами, арктангенсами и арккотангенсами. Например, справедливы записи:

a r c sin — 1 2 = — a r c sin 1 2 a r c cos — 5 5 7 = π — arccos 5 5 7 arctg — 1 = — arctg 1 arcctg ( — 3 ) = π — arcctg 3

Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

Сумма арксинуса и арккосинуса, арктангенса и арккотангенса

Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.

Сумма arcsin и arccos

a r c sin a + a r c cos a = π 2 , a ∈ — 1 , 1

Соответственно, для арктангенса и арккотангенса

Сумма arctg и arcctg

a r c t g a + a r c c t g a = π 2 , a ∈ — ∞ , + ∞

Приведем доказательство для арксинуса и арккосинуса. Формулу для суммы arcsin и arccos можно переписать в виде a r c sin a = π 2 — a r c cos a . Теперь обратимся к определению, согласно которому арксинус — это число (угол), лежащее в пределах от — π 2 до π 2 , синус которого равен a .

Запишем неравенство, вытекающее из определения арккосинуса: 0 ≤ a r c cos a ≤ π . Умножим все его части на — 1 , а затем прибавим к каждой части π 2 . Получим:

0 ≤ a r c cos a ≤ π 0 ≥ — arccos a ≥ — π π 2 ≥ π 2 — arccos a ≥ — π 2 — π 2 ≤ π 2 — arccos a ≤ π 2

Завершая доказательство, покажем, что sin π 2 — a r c cos a = a . Для этого используем формулу приведения и свойство косинуса от арккосинуса.

sin π 2 — a r c cos a = cos a r c cos a = a

Таким образом, доказано, что сумма арксинуса и арккосинуса равна π 2 . По такому же принципу проводится доказательство для суммы арктангенса и арккотангенса.

Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.

Пример 2. Сумма арксинуса и арккосинуса

Известно, что a r c sin 6 — 2 2 = π 12 . Найдем арккосинус этого числа.

a r c sin 6 — 2 2 + a r c cos 6 — 2 2 = π 2 a r c cos 6 — 2 2 = π 2 — a r c sin 6 — 2 2 a r c cos 6 — 2 2 = π 2 — π 12 = 5 π 12

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса

Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса

  • a r c sin ( sin α ) = α , — π 2 ≤ α ≤ π 2 ;
  • a r c cos ( cos α ) = α , 0 ≤ α ≤ π ;
  • a r c t g ( t g α ) = α , — π 2 ≤ α ≤ π 2 ;
  • a r c c t g ( c t g α ) = α , 0 ≤ α ≤ π .

Данные равенства и неравенства являются прямым следствием определений арксинуса, арккосинуса, арктангенса и арккотангенса. Покажем это, доказав, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .

Обозначим sin α через a . a — число, лежащее в интервале от — 1 до + 1 . Тогда равенство a r c sin ( sin α ) = α можно переписать в виде a r c sin a = α . Данное равенство, при заданных условиях, аналогично определению синуса. Таким образом, мы доказали, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .

Выражение a r c sin ( sin α ) имеет смысл не только при α , лежащем в пределах от — π 2 до π 2 . Однако, равенство a r c sin ( sin α ) = α выполняется только при соблюдении условия — π 2 ≤ α ≤ π 2 .

Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.

Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.

📽️ Видео

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Вычисление аркфункцийСкачать

Вычисление аркфункций

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Урок 6. Простейшие тригонометрические уравнения. Арксинус/арккосинус.Скачать

Урок 6.  Простейшие тригонометрические уравнения. Арксинус/арккосинус.

ЕГЭ №9. Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnlineСкачать

ЕГЭ №9.  Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnline

Математика Тригонометрия АрксинусСкачать

Математика Тригонометрия  Арксинус
Поделиться или сохранить к себе: