Решение тригонометрических уравнений и неравенств арксинус арккосинус

Уравнения и неравенства, содержащие обратные тригонометрические функции

Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.

Вначале напомним важнейшие свойства обратных тригонометрических функций.

1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];

arcsin (– x) = – arcsin x (x О [– 1; 1]);
Решение тригонометрических уравнений и неравенств арксинус арккосинус

2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];

3 Функция y = arctg x определена и монотонно возрастает на R;

arctg (– x) = – arctg x (x О R);
Решение тригонометрических уравнений и неравенств арксинус арккосинус

4 Функция y = arcctg x определена и монотонно убывает на R;

5

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.

I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями

Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.

1 .

Решение тригонометрических уравнений и неравенств арксинус арккосинус

2 .

Решение тригонометрических уравнений и неравенств арксинус арккосинус

3 .

4 .

Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).

Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).

Решение. Уравнение равносильно системе

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.

Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).

Решение. Неравенство равносильно следующему:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 3. Решить неравенство 3arcsin 2x

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .

Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:

arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Аналогичные равносильные преобразования используются и при решении задач с параметрами.

Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.

Решение. Уравнение равносильно уравнению

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Рассмотрим два случая:

1) a = 0. В этом случае система примет вид: Решение тригонометрических уравнений и неравенств арксинус арккосинус

2) a № 0. В этом случае уравнение системы является квадратным. Его корни: Решение тригонометрических уравнений и неравенств арксинус арккосинус
Так как | x | Ј 1, то Решение тригонометрических уравнений и неравенств арксинус арккосинус . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.

Ответ: при Решение тригонометрических уравнений и неравенств арксинус арккосинус при a = – 1 и a = 0 x = 1; при прочих a решений нет.

Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).

Решение. Неравенство равносильно системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > Решение тригонометрических уравнений и неравенств арксинус арккосинус первое неравенство системы равносильно неравенству x і 1, при a Решение тригонометрических уравнений и неравенств арксинус арккосинус – неравенству x Ј 1, при a = Решение тригонометрических уравнений и неравенств арксинус арккосинус решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.

Решение тригонометрических уравнений и неравенств арксинус арккосинусОтвет: при | a | > Решение тригонометрических уравнений и неравенств арксинус арккосинусрешений нет; при a = – Решение тригонометрических уравнений и неравенств арксинус арккосинусx = 1;

Решение тригонометрических уравнений и неравенств арксинус арккосинус

II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями

При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)

Рассуждая аналогично, можно получить следующие переходы:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.

Пример 9. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень Решение тригонометрических уравнений и неравенств арксинус арккосинус является посторонним.

Пример 10. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень x = – 2 является посторонним.

Ответ: . Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корни вида Решение тригонометрических уравнений и неравенств арксинус арккосинус являются посторонними.

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.

Пример 12. Решить неравенство Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Рассмотрим функцию Решение тригонометрических уравнений и неравенств арксинус арккосинус

и решим неравенство f(x) Ј 0 методом интервалов.

1) Найдем D(f). Для этого решим систему

Решение тригонометрических уравнений и неравенств арксинус арккосинус

2) Найдем нули f(x). Для этого решим уравнение

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Корень x = – 2 является посторонним.

3) Решим неравенство f(x) Ј 0 методом интервалов.

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Замечание 4. Заметим, что найдя корень уравнения Решение тригонометрических уравнений и неравенств арксинус арккосинус можно было не обращаться к методу интервалов, а воспользоваться тем, что функция Решение тригонометрических уравнений и неравенств арксинус арккосинус является монотонно возрастающей, а функция Решение тригонометрических уравнений и неравенств арксинус арккосинус монотонно убывающей на отрезке Решение тригонометрических уравнений и неравенств арксинус арккосинус . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.

При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2xa).

Решение. Данное уравнение равносильно системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: при любом a Решение тригонометрических уравнений и неравенств арксинус арккосинус

III. Замена переменной

Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.

Пример 14. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Обозначим Решение тригонометрических уравнений и неравенств арксинус арккосинус После преобразований получим уравнение

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Поскольку Решение тригонометрических уравнений и неравенств арксинус арккосинус

откуда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.

Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Поскольку Решение тригонометрических уравнений и неравенств арксинус арккосинус откуда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: [– 1; cos 2] И [cos 1; 1].

Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 16. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Данное уравнение равносильно следующему:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пусть arcsin x = t, Решение тригонометрических уравнений и неравенств арксинус арккосинус

Тогда Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение тригонометрических уравнений и неравенств арксинус арккосинус

IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций

Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.

Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.

Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.

Теорема 3. Если Решение тригонометрических уравнений и неравенств арксинус арккосинус то на множестве X уравнение f(x) = g(x) равносильно
системе Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.

Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.

Пример 18. Решить уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Пусть x 2 + x = t. Тогда уравнение примет вид Решение тригонометрических уравнений и неравенств арксинус арккосинус

Функции Решение тригонометрических уравнений и неравенств арксинус арккосинусявляются монотонно возрастающими. Поэтому функция Решение тригонометрических уравнений и неравенств арксинус арккосинустакже является монотонно возрастающей. В силу теоремы 1 уравнение Решение тригонометрических уравнений и неравенств арксинус арккосинусимеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0 Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 19. Решить неравенство Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке Решение тригонометрических уравнений и неравенств арксинус арккосинусфункцию Решение тригонометрических уравнений и неравенств арксинус арккосинусУравнение Решение тригонометрических уравнений и неравенств арксинус арккосинусв силу теоремы 1 имеет не более одного корня. Очевидно, что Решение тригонометрических уравнений и неравенств арксинус арккосинус– корень этого уравнения. Поэтому решением неравенства Решение тригонометрических уравнений и неравенств арксинус арккосинусявляется отрезок Решение тригонометрических уравнений и неравенств арксинус арккосинус

Ответ: Решение тригонометрических уравнений и неравенств арксинус арккосинус

Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .

Решение. Поскольку arcsin Решение тригонометрических уравнений и неравенств арксинус арккосинусто левая часть уравнения не превосходит Решение тригонометрических уравнений и неравенств арксинус арккосинусЗнак равенства возможен, лишь если каждое слагаемое левой части равно Решение тригонометрических уравнений и неравенств арксинус арккосинус. Таким образом, уравнение равносильно системе:

Решение тригонометрических уравнений и неравенств арксинус арккосинус

Решение последней системы не представляет труда.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Алгебра

План урока:

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства

Арксинус, арккосинус, арктангенс и арккотангенс — обратные тригонометрические функции. Они обладают рядом свойств, которые мы рассмотрим в этой статье. Помимо словесных и математических формулировок основных свойств арксинуса, арккосинуса, арктангенса и арккотангенса, будут приведены доказательства этих свойств.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса

Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.

Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа

  • sin a r c sin a = a , a ∈ 1 ; — 1 ;
  • cos a r c cos a = a , a ∈ 1 ; — 1 ;
  • t g ( a r c t g a ) = a , a ∈ — ∞ ; + ∞ ;
  • c t g ( a r c c t g a ) = a , a ∈ — ∞ ; + ∞ .

Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.

Рассмотрим доказательство на примере арксинуса. Согласно определению, арксинус числа — это такой угол или число, синус которого равен числу a . При этом число a лежит в пределах от — 1 до + 1 включительно. В виде формулы определение запишется так:

sin ( a r c sin a ) = a

Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.

Пример 1. Свойства обратных тригонометрических функций

sin ( a r c sin ( 0 , 3 ) = 0 , 3 cos a r c cos — 3 2 = — 3 2 t g ( a r c t g ( 8 ) ) = 8 c t g ( a r c c t g ( 15 8 9 ) ) = 15 8 9

Важно отметить, что для обратных функций синуса и косинуса имеет место ограничение для значений числа a . Так, при a , лежащем вне пределов отрезка — 1 , 1 , арксинус и арккосинус не определены и записи a r c sin a и a r c cos a попросту не имеют смысла. Это связано с тем, что область значений синуса и косинуса — от минус единицы до плюс единицы. Например, нельзя записать cos ( a r c cos ( 9 ) ) , так как 9 больше 1 и данное выражение не имеет смысла. Делать подобные записи — ошибочно!

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел

Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.

arcsin, arccos, arctg и arcctg противоположных чисел

  • a r c sin — a = — a r c sin a , a ∈ — 1 , 1 ;
  • a r c cos — a = π — a r c cos a , a ∈ — 1 , 1 ;
  • a r c t g — a = — a r c t g a , a ∈ — ∞ , + ∞ ;
  • a r c c t g — a = π — a r c c t g a , a ∈ — ∞ , + ∞ .

Докажем записанное. Начнем, как всегда, с доказательства для арксинусов. При — 1 ≤ a ≤ 1 имеет место равенство a r c sin — a = — a r c sin a . Согласно дефиниции, a r c sin ( — a ) — это угол (число) в пределах от — π 2 до π 2 , синус которого равен — a . Для доказательства справедливости первого равенства необходимо доказать, что — a r c sin a лежит в тех же пределах от — π 2 до π 2 , что и a r c sin ( — a ) . Также необходимо обосновать, что sin ( — a r c sin a ) = — a .

Для арксинуса, по определению, справедливо двойное неравенство — π 2 ≤ a r c sin a ≤ π 2 . Умножим каждую часть неравенства на — 1 и получим эквивалентное неравенство π 2 ≥ — a r c sin a ≥ — π 2 . Переписав его, получим — π 2 ≤ — a r c sin a ≤ π 2 .

Переходим ко второй части доказательства. Теперь осталось показать, что sin ( — a r c sin a ) = — a . Для этого воспользуемся свойством синусов противоположных углов и запишем: sin — a r c sin a = — sin a r c sin a . С учетом свойства арксинуса, рассмотренного в предыдущем пункте, закончим доказательство.

sin — a r c sin a = — sin a r c sin a = — a

Доказательство свойства арксинусов противоположных чисел завершено.

Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.

Для того, чтобы доказать, что a r c cos — a = π — a r c cos a при a ∈ — 1 , 1 необходимо во-первых показать, что число undefined.

Для арккосинуса, по определению, справедливо двойное неравенство 0 ≤ a r c cos a ≤ π . Умножив каждую часть неравенства на — 1 и поменяв знаки, получим эквивалентное неравенство 0 ≥ — a r c cos a ≥ — π . Перепишем его в другом виде. По свойствам неравенств, можно добавить к каждой части слагаемое, не меняя знаков. Добавим в каждую часть неравенства слагаемое π . Получим π ≥ π — a r c cos a ≥ 0 , или 0 ≤ π — a r c cos a ≤ π .

Теперь покажем, что cos π — arccos a = — a . Для этого воспользуемся формулами приведения, согласно которым можно записать cos π — arccos a = — cos ( a r c cos a ) . Обратившись к свойству арккосинуса, разобранному ранее (см. 1 пункт), заканчиваем доказательство.

cos π — arccos a = — cos ( a r c cos a ) = — a .

Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.

Основная польза данного свойства — возможность избавиться от операций с отрицательными числами при работе с арксинусами, арккосинусами, арктангенсами и арккотангенсами. Например, справедливы записи:

a r c sin — 1 2 = — a r c sin 1 2 a r c cos — 5 5 7 = π — arccos 5 5 7 arctg — 1 = — arctg 1 arcctg ( — 3 ) = π — arcctg 3

Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Сумма арксинуса и арккосинуса, арктангенса и арккотангенса

Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.

Сумма arcsin и arccos

a r c sin a + a r c cos a = π 2 , a ∈ — 1 , 1

Соответственно, для арктангенса и арккотангенса

Сумма arctg и arcctg

a r c t g a + a r c c t g a = π 2 , a ∈ — ∞ , + ∞

Приведем доказательство для арксинуса и арккосинуса. Формулу для суммы arcsin и arccos можно переписать в виде a r c sin a = π 2 — a r c cos a . Теперь обратимся к определению, согласно которому арксинус — это число (угол), лежащее в пределах от — π 2 до π 2 , синус которого равен a .

Запишем неравенство, вытекающее из определения арккосинуса: 0 ≤ a r c cos a ≤ π . Умножим все его части на — 1 , а затем прибавим к каждой части π 2 . Получим:

0 ≤ a r c cos a ≤ π 0 ≥ — arccos a ≥ — π π 2 ≥ π 2 — arccos a ≥ — π 2 — π 2 ≤ π 2 — arccos a ≤ π 2

Завершая доказательство, покажем, что sin π 2 — a r c cos a = a . Для этого используем формулу приведения и свойство косинуса от арккосинуса.

sin π 2 — a r c cos a = cos a r c cos a = a

Таким образом, доказано, что сумма арксинуса и арккосинуса равна π 2 . По такому же принципу проводится доказательство для суммы арктангенса и арккотангенса.

Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.

Пример 2. Сумма арксинуса и арккосинуса

Известно, что a r c sin 6 — 2 2 = π 12 . Найдем арккосинус этого числа.

a r c sin 6 — 2 2 + a r c cos 6 — 2 2 = π 2 a r c cos 6 — 2 2 = π 2 — a r c sin 6 — 2 2 a r c cos 6 — 2 2 = π 2 — π 12 = 5 π 12

Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !

Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса

Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса

  • a r c sin ( sin α ) = α , — π 2 ≤ α ≤ π 2 ;
  • a r c cos ( cos α ) = α , 0 ≤ α ≤ π ;
  • a r c t g ( t g α ) = α , — π 2 ≤ α ≤ π 2 ;
  • a r c c t g ( c t g α ) = α , 0 ≤ α ≤ π .

Данные равенства и неравенства являются прямым следствием определений арксинуса, арккосинуса, арктангенса и арккотангенса. Покажем это, доказав, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .

Обозначим sin α через a . a — число, лежащее в интервале от — 1 до + 1 . Тогда равенство a r c sin ( sin α ) = α можно переписать в виде a r c sin a = α . Данное равенство, при заданных условиях, аналогично определению синуса. Таким образом, мы доказали, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .

Выражение a r c sin ( sin α ) имеет смысл не только при α , лежащем в пределах от — π 2 до π 2 . Однако, равенство a r c sin ( sin α ) = α выполняется только при соблюдении условия — π 2 ≤ α ≤ π 2 .

Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.

К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.

Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.

📸 Видео

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Вычисление аркфункцийСкачать

Вычисление аркфункций

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Урок 6. Простейшие тригонометрические уравнения. Арксинус/арккосинус.Скачать

Урок 6.  Простейшие тригонометрические уравнения. Арксинус/арккосинус.

ЕГЭ №9. Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnlineСкачать

ЕГЭ №9.  Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnline

Математика Тригонометрия АрксинусСкачать

Математика Тригонометрия  Арксинус
Поделиться или сохранить к себе: