Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.
Вначале напомним важнейшие свойства обратных тригонометрических функций.
1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];
arcsin (– x) = – arcsin x (x О [– 1; 1]);
2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];
3 Функция y = arctg x определена и монотонно возрастает на R;
arctg (– x) = – arctg x (x О R);
4 Функция y = arcctg x определена и монотонно убывает на R;
5
Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.
I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями
Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.
1 .
2 .
3 .
4 .
Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).
Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).
Решение. Уравнение равносильно системе
Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.
Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).
Решение. Неравенство равносильно следующему:
Пример 3. Решить неравенство 3arcsin 2x
Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).
Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .
Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:
arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы
Аналогичные равносильные преобразования используются и при решении задач с параметрами.
Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.
Решение. Уравнение равносильно уравнению
Рассмотрим два случая:
1) a = 0. В этом случае система примет вид:
2) a № 0. В этом случае уравнение системы является квадратным. Его корни:
Так как | x | Ј 1, то . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.
Ответ: при при a = – 1 и a = 0 x = 1; при прочих a решений нет.
Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).
Решение. Неравенство равносильно системе
Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x і 1, при a – неравенству x Ј 1, при a = решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.
Ответ: при | a | > решений нет; при a = – x = 1;
II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями
При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)
Рассуждая аналогично, можно получить следующие переходы:
Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.
Пример 9. Решить уравнение
Корень является посторонним.
Пример 10. Решить уравнение
Корень x = – 2 является посторонним.
Ответ: .
Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).
Корни вида являются посторонними.
Ответ:
При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.
Пример 12. Решить неравенство
Решение. Рассмотрим функцию
и решим неравенство f(x) Ј 0 методом интервалов.
1) Найдем D(f). Для этого решим систему
2) Найдем нули f(x). Для этого решим уравнение
Корень x = – 2 является посторонним.
3) Решим неравенство f(x) Ј 0 методом интервалов.
Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.
При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,
Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2x – a).
Решение. Данное уравнение равносильно системе
Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень
Ответ: при любом a
III. Замена переменной
Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.
Пример 14. Решить уравнение
Решение. Обозначим После преобразований получим уравнение
Поскольку
откуда
Ответ:
Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.
Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда
Поскольку откуда
Ответ: [– 1; cos 2] И [cos 1; 1].
Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества
Пример 16. Решить уравнение
Решение. Данное уравнение равносильно следующему:
Пусть arcsin x = t,
Тогда
IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций
Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.
Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.
Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.
Теорема 3. Если то на множестве X уравнение f(x) = g(x) равносильно
системе
Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.
Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.
Пример 18. Решить уравнение
Решение. Пусть x 2 + x = t. Тогда уравнение примет вид
Функции являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0
Пример 19. Решить неравенство
Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок
Ответ:
Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .
Решение. Поскольку arcsin то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно . Таким образом, уравнение равносильно системе:
Решение последней системы не представляет труда.
- Алгебра
- Арккосинус
- Решение уравнений tgx = a и ctgx = a
- Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства
- Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса
- Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел
- Сумма арксинуса и арккосинуса, арктангенса и арккотангенса
- Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса
- 📽️ Видео
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Алгебра
План урока:
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Наконец, решениями ур-ния
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать
Арксинус, арккосинус, арктангенс и арккотангенс числа: основные свойства
Арксинус, арккосинус, арктангенс и арккотангенс — обратные тригонометрические функции. Они обладают рядом свойств, которые мы рассмотрим в этой статье. Помимо словесных и математических формулировок основных свойств арксинуса, арккосинуса, арктангенса и арккотангенса, будут приведены доказательства этих свойств.
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса
Это свойство используется чаще всего, поэтому логичнее всего начать рассмотрение всех основных свойств именно с него. Рассмотрим, чему равны синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа.
Синус арксинуса, косинус арккосинуса, тангенс арктангенса и котангенс арккотангенса числа
- sin a r c sin a = a , a ∈ 1 ; — 1 ;
- cos a r c cos a = a , a ∈ 1 ; — 1 ;
- t g ( a r c t g a ) = a , a ∈ — ∞ ; + ∞ ;
- c t g ( a r c c t g a ) = a , a ∈ — ∞ ; + ∞ .
Данное свойство следует напрямую из определения арксинуса, арккосинуса, арктангенса и арккотангенса.
Рассмотрим доказательство на примере арксинуса. Согласно определению, арксинус числа — это такой угол или число, синус которого равен числу a . При этом число a лежит в пределах от — 1 до + 1 включительно. В виде формулы определение запишется так:
sin ( a r c sin a ) = a
Доказательство для арккосинуса, арктангенса и арккотангенса строится аналогично, на базе определений этих функций. Вот несколько примеров использования данного свойства.
Пример 1. Свойства обратных тригонометрических функций
sin ( a r c sin ( 0 , 3 ) = 0 , 3 cos a r c cos — 3 2 = — 3 2 t g ( a r c t g ( 8 ) ) = 8 c t g ( a r c c t g ( 15 8 9 ) ) = 15 8 9
Важно отметить, что для обратных функций синуса и косинуса имеет место ограничение для значений числа a . Так, при a , лежащем вне пределов отрезка — 1 , 1 , арксинус и арккосинус не определены и записи a r c sin a и a r c cos a попросту не имеют смысла. Это связано с тем, что область значений синуса и косинуса — от минус единицы до плюс единицы. Например, нельзя записать cos ( a r c cos ( 9 ) ) , так как 9 больше 1 и данное выражение не имеет смысла. Делать подобные записи — ошибочно!
Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Арксинус, арккосинус, арктангенс и арккотангенс противоположных чисел
Существует связь между арксинусами, арккосинусами, арктангенсами и арккотангенсами противоположных чисел. Запишем соотношения, выражающие ее.
arcsin, arccos, arctg и arcctg противоположных чисел
- a r c sin — a = — a r c sin a , a ∈ — 1 , 1 ;
- a r c cos — a = π — a r c cos a , a ∈ — 1 , 1 ;
- a r c t g — a = — a r c t g a , a ∈ — ∞ , + ∞ ;
- a r c c t g — a = π — a r c c t g a , a ∈ — ∞ , + ∞ .
Докажем записанное. Начнем, как всегда, с доказательства для арксинусов. При — 1 ≤ a ≤ 1 имеет место равенство a r c sin — a = — a r c sin a . Согласно дефиниции, a r c sin ( — a ) — это угол (число) в пределах от — π 2 до π 2 , синус которого равен — a . Для доказательства справедливости первого равенства необходимо доказать, что — a r c sin a лежит в тех же пределах от — π 2 до π 2 , что и a r c sin ( — a ) . Также необходимо обосновать, что sin ( — a r c sin a ) = — a .
Для арксинуса, по определению, справедливо двойное неравенство — π 2 ≤ a r c sin a ≤ π 2 . Умножим каждую часть неравенства на — 1 и получим эквивалентное неравенство π 2 ≥ — a r c sin a ≥ — π 2 . Переписав его, получим — π 2 ≤ — a r c sin a ≤ π 2 .
Переходим ко второй части доказательства. Теперь осталось показать, что sin ( — a r c sin a ) = — a . Для этого воспользуемся свойством синусов противоположных углов и запишем: sin — a r c sin a = — sin a r c sin a . С учетом свойства арксинуса, рассмотренного в предыдущем пункте, закончим доказательство.
sin — a r c sin a = — sin a r c sin a = — a
Доказательство свойства арксинусов противоположных чисел завершено.
Теперь рассмотрим доказательство свойства арккосинусов противоположных чисел.
Для того, чтобы доказать, что a r c cos — a = π — a r c cos a при a ∈ — 1 , 1 необходимо во-первых показать, что число undefined.
Для арккосинуса, по определению, справедливо двойное неравенство 0 ≤ a r c cos a ≤ π . Умножив каждую часть неравенства на — 1 и поменяв знаки, получим эквивалентное неравенство 0 ≥ — a r c cos a ≥ — π . Перепишем его в другом виде. По свойствам неравенств, можно добавить к каждой части слагаемое, не меняя знаков. Добавим в каждую часть неравенства слагаемое π . Получим π ≥ π — a r c cos a ≥ 0 , или 0 ≤ π — a r c cos a ≤ π .
Теперь покажем, что cos π — arccos a = — a . Для этого воспользуемся формулами приведения, согласно которым можно записать cos π — arccos a = — cos ( a r c cos a ) . Обратившись к свойству арккосинуса, разобранному ранее (см. 1 пункт), заканчиваем доказательство.
cos π — arccos a = — cos ( a r c cos a ) = — a .
Доказательства для арктангенса и арккотангенса проводится по аналогичному принципу.
Основная польза данного свойства — возможность избавиться от операций с отрицательными числами при работе с арксинусами, арккосинусами, арктангенсами и арккотангенсами. Например, справедливы записи:
a r c sin — 1 2 = — a r c sin 1 2 a r c cos — 5 5 7 = π — arccos 5 5 7 arctg — 1 = — arctg 1 arcctg ( — 3 ) = π — arcctg 3
Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать
Сумма арксинуса и арккосинуса, арктангенса и арккотангенса
Данное свойство устанавливает связь соответственно между арксинусом и арккосинусам, арктангенсом и арккотангенсом. Запишем формулы для арксинуса и арккосинуса.
Сумма arcsin и arccos
a r c sin a + a r c cos a = π 2 , a ∈ — 1 , 1
Соответственно, для арктангенса и арккотангенса
Сумма arctg и arcctg
a r c t g a + a r c c t g a = π 2 , a ∈ — ∞ , + ∞
Приведем доказательство для арксинуса и арккосинуса. Формулу для суммы arcsin и arccos можно переписать в виде a r c sin a = π 2 — a r c cos a . Теперь обратимся к определению, согласно которому арксинус — это число (угол), лежащее в пределах от — π 2 до π 2 , синус которого равен a .
Запишем неравенство, вытекающее из определения арккосинуса: 0 ≤ a r c cos a ≤ π . Умножим все его части на — 1 , а затем прибавим к каждой части π 2 . Получим:
0 ≤ a r c cos a ≤ π 0 ≥ — arccos a ≥ — π π 2 ≥ π 2 — arccos a ≥ — π 2 — π 2 ≤ π 2 — arccos a ≤ π 2
Завершая доказательство, покажем, что sin π 2 — a r c cos a = a . Для этого используем формулу приведения и свойство косинуса от арккосинуса.
sin π 2 — a r c cos a = cos a r c cos a = a
Таким образом, доказано, что сумма арксинуса и арккосинуса равна π 2 . По такому же принципу проводится доказательство для суммы арктангенса и арккотангенса.
Пользуясь разобранными свойствами, можно выряжать арксинус через арккосинус, арккосинус через арксинус, арктангенс через арккотангенс и наоборот.
Пример 2. Сумма арксинуса и арккосинуса
Известно, что a r c sin 6 — 2 2 = π 12 . Найдем арккосинус этого числа.
a r c sin 6 — 2 2 + a r c cos 6 — 2 2 = π 2 a r c cos 6 — 2 2 = π 2 — a r c sin 6 — 2 2 a r c cos 6 — 2 2 = π 2 — π 12 = 5 π 12
Видео:Как решать тригонометрические неравенства?Скачать
Арксинус синуса, арккосинус косинуса, арктангенс тангенса и арккотангенс котангенса
Запишем соотношения, иллюстрирующие свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
Свойства арксинуса синуса, арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса
- a r c sin ( sin α ) = α , — π 2 ≤ α ≤ π 2 ;
- a r c cos ( cos α ) = α , 0 ≤ α ≤ π ;
- a r c t g ( t g α ) = α , — π 2 ≤ α ≤ π 2 ;
- a r c c t g ( c t g α ) = α , 0 ≤ α ≤ π .
Данные равенства и неравенства являются прямым следствием определений арксинуса, арккосинуса, арктангенса и арккотангенса. Покажем это, доказав, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .
Обозначим sin α через a . a — число, лежащее в интервале от — 1 до + 1 . Тогда равенство a r c sin ( sin α ) = α можно переписать в виде a r c sin a = α . Данное равенство, при заданных условиях, аналогично определению синуса. Таким образом, мы доказали, что a r c sin ( sin α ) = α при — π 2 ≤ α ≤ π 2 .
Выражение a r c sin ( sin α ) имеет смысл не только при α , лежащем в пределах от — π 2 до π 2 . Однако, равенство a r c sin ( sin α ) = α выполняется только при соблюдении условия — π 2 ≤ α ≤ π 2 .
Аналогично, соблюдение условий обязательно для арккосинуса косинуса, арктангенса тангенса и арккотангенса котангенса.
К примеру, запись a r c sin ( sin 8 π 3 ) = 8 π 3 будет ошибочной, так как число 8 π 3 не удовлетворяет условиям неравенства.
Описанные в этой статье свойства позволяют получить ряд полезных формул, определяющих связи между основными и обратными тригонометрическими функциями. Соотношениям, связывающим sin, cos, tg, ctg, arcsin, arccos, arctg и arcctg будет посвящена отдельная статья.
📽️ Видео
ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Вычисление аркфункцийСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать
Урок 6. Простейшие тригонометрические уравнения. Арксинус/арккосинус.Скачать
ЕГЭ №9. Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnlineСкачать
Математика Тригонометрия АрксинусСкачать