Решение системы уравнений с помощью блока given find дает решение

Решение систем уравнений в MathCad

Решение системы уравнений с помощью блока given find дает решение

Для решения уравнений в Mathcad можно воспользоваться двумя способами. Эти способы были частично рассмотрены в разделе «Решение уравнений»:

Видео:Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

Средство для решения систем уравнений в MathCAD 14 (29/34)

Использование метода Given — Find:

В рабочем поле mathcad записываем слово Given. Это служебное слово. Оно подключает определенные программные модули mathcad для обработки исходных данных, необходимых для решения системы уравнений численными методами.

Затем указывается начальное приближение для искомых переменных. Это нужно для увеличения скорости и точности решения системы. Если начальное приближение не задать, то mathcad по умолчанию примет его равным нулю для всех переменных, при этом, если окажется, что система имеет несколько решений, то есть риск не определить все корни. Поэтому лучше всегда задавать приближение

Решение системы уравнений с помощью блока given find дает решение

Рис. 1. Ввод исходных данных в поле mathcad

Далее вводятся уравнения. Их можно записать в явном или неявном виде. Само уравнение набирается с клавиатуры вручную с использованием панели Calculator. Из этой панели можно взять основные математические операции: дроби, тригонометрию, факториалы и прочее. Уравнение нужно записывать с использованием логического символа «ровно». На панели Boolean он выделен жирным шрифтом (см. рис. 2)

Решение системы уравнений с помощью блока given find дает решение

Рис. 2. Панели Boolean и Calculator

Когда уравнения записаны вводится функция Find(x, y, z. ) (где х, y, z. — переменные). Это функция, которая возвращает результат решения системы. Значение функции Find() можно присвоить какой-либо переменной с помощью символа «:=» и использовать ее далее в расчетах (см. рис. 3). При решении систем уравнений в mathcad результатом всегда будет являтся матрица значений

Решение системы уравнений с помощью блока given find дает решение

Рис. 3. Ввод функции Find()

Для того чтобы увидеть результат решения системы уравнений, после Find(x, y, z. ) следует поставить символ «» либо «=» из панели Evaluation (см. рис. 4).

Решение системы уравнений с помощью блока given find дает решение

Рис. 4. Панель «Evaluation»

В зависимости от сложности системы через определенное время MathCad выведет результат. На рис. 5 можно рассмотреть синтаксис и результат решения системы уравнений. Обратите внимание, что можно присваивать результат решения системы матричной переменной и можно работать с отдельными ее элементами

Решение системы уравнений с помощью блока given find дает решение

Рис. 5. Результат численного решения системы уравнений

Mathcad позволяет решать системы уравний в символьном виде. Обычно это полезно, когда требуется получить не точное значение переменных, а их выражения через константы. Например, если мы заменим все числовые константы на неизвестные параметры и решим уравнение относительно x, y и z, то результат выведется в символьном виде (см. рис. 6). Причем, обратите внимание, что в данном случае нам не нужно вводить начальное приближение и мы должны использовать символ «» для вывода результата. Как правило, символьное решение получается громоздким, поэтому не всегда рекомендуется использовать этот метод

Решение системы уравнений с помощью блока given find дает решение

Рис. 6. Результат символьного решения системы уравнений

Видео:MathCAD. Given - FindСкачать

MathCAD. Given - Find

Использование метода Solve:

Как показывает практика, методом solve иногда удается решить системы уравнений, которые не поддаются решению с помощью функции Find()

Синтаксис следующий: на панели matrix нажимаем иконку Matrix or Vector и в появившемся окне указываем количество уравнений входящих в систему. В нашем примере их будет три (см. рис. 7)

Решение системы уравнений с помощью блока given find дает решение

Рис. 7. Создание матрицы для метода SOLVE

Заполняем систему, вводя последовательно все уравнения используя логический символ «ровно» из панели Boolean. Каждый элемент матрицы-столбца содержит одно уравнение (см. рис. 8)

Решение системы уравнений с помощью блока given find дает решение

Рис. 8. Ввод системы уравнений для метода SOLVE

Когда все уравнения введены, убедитесь, что курсор ввода находится в вашей матрице и затем нажмите кнопку «solve» из панели Symbolic. Появится служебное слово (функция) solve. Далее поставте запятую и введите последовательно все переменные, относительно которых необходимо решить систему уравнений (см. рис. 9)

Решение системы уравнений с помощью блока given find дает решение

Рис. 9. Синтаксис метода SOLVE для решения систем

Уведите курсор в свободное поле mathcad и дождитесь окончания решения системы. Обратите внимание, что мы не вводили начальные приближения. Даный метод их назначает автоматически. Обратите так же внимание, что для решения системы в символьном виде синтаксис аналогичен (см. рис. 10)

Решение системы уравнений с помощью блока given find дает решение

Рис. 10. Синтаксис метода SOLVE для решения систем

Как показывает моя инженерная практика, решение систем в символьном виде сопряжено с большими вычислительными трудностями. То есть иногда решение системы занимает массу времени, и в итоге mathcad выдает выражение для одной переменной непомерной длины, которое нельзя использовать. Поэтому рекомендуется прменять эту возможность лишь в крайних случаях и по возможности «помогать» mathcad, заменяя константы известными числовыми значениями

Решение системы уравнений с помощью блока given find дает решение

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fergiat. Pellentesque in mi eu massa lacinia malesuada et a elit. Donec urna ex, lacinia in purus ac, pretium pulvinar mauris. Curabitur sapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis dapibus rutrum facilisis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam tristique libero eu nibh porttitor fermentum. Nullam venenatis erat id vehicula viverra. Nunc ultrices eros ut ultricies condimentum. Mauris risus lacus, blandit sit amet venenatis non, bibendum vitae dolor. Nunc lorem mauris, fringilla in aliquam at, euismod in lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non lorem sit amet elit placerat maximus. Pellentesque aliquam maximus risus, vel venenatis mauris vehicula hendrerit.

Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fersapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique lorem ipsum dolor.

Видео:Приближенное решение систем уравнений в MathCAD 14 (30/34)Скачать

Приближенное решение систем уравнений в MathCAD 14 (30/34)

Решение системы уравнений с помощью блока given find дает решение

РЕШЕНИЕ УРАВНЕНИЙ И СИСТЕМ УРАВНЕНИЙ

4 Решение уравнений и систем средствами Mathcad

Система Mathcad обладает широкими возможностями численного решения уравнений и систем уравнений.

Функция root, блоки Given…Find, Given…Minerr

В ходе численного решения обычно выделяют два этапа:

  • отделение корней – определение интервала нахождения каждого корня или определение приблизительного значения корня. В системе Mathcad наиболее наглядным будет отделение корней уравнения графическим способом;
  • уточнение корней – нахождение численного значения корня с указанной точностью.

Точность нахождения корня устанавливается с помощью системной переменной TOL (Convergence Tolerance – Допуск сходимости), которая по умолчанию равна 10 -3 . Чем меньше значение TOL, тем точнее, вообще говоря, находится корень уравнения. Однако оптимальным является TOL = 10 -5 . Переопределить значение TOL можно в окне математических свойств документа Math Options на вкладке Build-In Variables (Встроенные переменные) или присваиванием, например, TOL:=0.0001.

Для решения одного уравнения с одной неизвестной предназначена встроенная функция root, которая в общем виде задается

root(f(x), x, [a, b])

и возвращает значение переменной x, при котором функция f(x) обращается в ноль. Аргументы функции root:

  • f(x) – функция левой части уравнения f(x) = 0;
  • x – переменная, относительно которой требуется решить уравнение;
  • a, b (необязательные) – действительные числа, такие что a -1 слева: A -1 Ax=A -1 b. Учитывая, что A -1 A, вектор-столбец решений системы можно искать в виде

Этот прием используется в Mathcad так:

  1. задается матрица коэффициентов при неизвестных системы A;
  2. задается столбец свободных членов b;
  3. вводится формула для нахождения решения системы X:=A -1 b;
  4. выводится вектор решений системы X=.

Кроме того, пакет Mathcad имеет встроенную функцию

lsolve(A, b),

возвращающую вектор-столбец решений системы линейных алгебраических уравнений. Аргументами функции lsolve являются матрица коэффициентов при неизвестных системы и столбец свободных членов. Порядок решения аналогичен рассмотренному, но вместо формулы X:=A -1 b используется X:=lsolve(A, b).

Реализовать широко известный метод Гаусса решения систем линейных уравнений позволяет встроенная функция rref(M), возвращающая ступенчатый вид матрицы M. Если в качестве аргумента взять расширенную матрицу системы, то в результате применения rref получится матрица, на диагонали которой – единицы, а последний столбец представляет собой столбец решений системы.

Решение системы линейных уравнений можно осуществить с помощью блоков Given…Find, Given…Minerr. При этом неизвестным системы задается произвольное начальное приближение, а проверка необязательна.

Порядок выполнения лабораторной работы

  1. Загрузить Mathcad Start / All Programs / Mathsoft Apps / Mathcad (Пуск / Все программы / Mathsoft Apps / Mathcad).
  2. Сохранить в личной папке на диске z: новый документ с именем ФИО1, лучше использовать латинские буквы. Производить сохранение регулярно в процессе работы (Ctrl + S).
  3. Вставить текстовую область Insert / Text Region (Вставка / Область текста) и ввести в поле документа текст:

Лабораторная работа № 4
Решение уравнений и систем в Mathcad.

  1. В новой текстовой области ввести фамилию, имя, отчество, учебный шифр и номер варианта.
  2. Выполнить задание 1.

Задание 1. Решить уравнение Решение системы уравнений с помощью блока given find дает решение.

Решение.

Решение данного уравнения будем проводить в два этапа: отделение корней уравнения графически, уточнение корней уравнения.

Определим функцию f(x), равную левой части данного уравнения, когда правая равна нулю:

Решение системы уравнений с помощью блока given find дает решение

Зададим ранжированную переменную x на некотором диапазоне с мелким шагом, например:

Вставим в документ графическую область. Для этого выберем дважды пиктограмму с изображением графика Решение системы уравнений с помощью блока given find дает решениесначала на панели Math (Математика), затем на палитре графиков Graph или выполним из главного меню последовательность команд Insert / Graph / X-Y Plot (Вставка / График / X-Y Зависимость).

Снизу по оси абсцисс наберем x, а сбоку по оси ординат введем f(x).

Для появления графика щелкнем левой клавишей мыши вне графической области.

Отформатируем график функции f(x). Для этого щелкнем правой клавишей мыши в области графика и выберем в контекстном меню команду Format (Формат). Установим пересечение осей графика (CrossedТолько оси), добавим вспомогательные линии по координатным осям (Grid LinesВспомогательные линии). Отменим при этом автосетку (AutogridАвтосетка) и установим количество линий сетки, равное 10.

Для подтверждения внесенных изменений нажмем последовательно кнопки Apply (Применить) и ОК.

После указанных преобразований график функции f(x) будет выглядеть следующим образом:

Решение системы уравнений с помощью блока given find дает решение

Из графика функции f(x) видно, что уравнение Решение системы уравнений с помощью блока given find дает решениеимеет три корня, которые приблизительно равны: x1 ≈ -1; x2 ≈ 1; x3 ≈ 2,5.

Этап отделения корней завершен.

Уточним теперь корни уравнения с помощью функции root.

Присвоим начальное приближение переменной x и укажем точность поиска корня:

Уточним заданное приближение к значению корня с помощью функции root:

Выполним проверку, подтверждающую, что первый корень найден с заявленной точностью:

Решение системы уравнений с помощью блока given find дает решение

Начальное приближение можно не задавать при использовании в качестве аргументов root границ отрезка нахождения корня, например, второй корень можно уточнить:

Решение системы уравнений с помощью блока given find дает решение

Задание 2. Решить уравнение Решение системы уравнений с помощью блока given find дает решение.

Решение.

Напечатаем левую часть уравнения, не приравнивая выражение к 0, и выделим синим курсором переменную x:

Решение системы уравнений с помощью блока given find дает решение

Выберем из главного меню Symbolics / Polynomial Coefficients (Символика / Коэффициенты полинома). Появившийся вектор коэффициентов полинома выделим целиком синим курсором и вырежем в буфер обмена, используя кнопку Вырезать Решение системы уравнений с помощью блока given find дает решениена панели инструментов Formatting (Форматирование) или комбинацию клавиш Ctrl + X.

Напечатаем v := и вставим вектор из буфера обмена, используя кнопку Вставить Решение системы уравнений с помощью блока given find дает решениена панели инструментов или комбинацию клавиш Ctrl + V.

Для получения результата напечатаем polyroots(v) =:

Решение системы уравнений с помощью блока given find дает решение

Задание 3. Решить систему линейных уравнений Решение системы уравнений с помощью блока given find дает решениеСделать проверку.

Решение.

1-й способ. Использование блока Given … Find.

Зададим всем неизвестным, входящим в систему уравнений, произвольные начальные приближения, например:

Напечатаем слово Given. Установим визир ниже и наберем уравнения системы, каждое в своем блоке. Используем при этом логический знак равенства (Ctrl + =).

После ввода уравнений системы напечатаем X := Find(x, y, z) и получим решение системы в виде вектора, состоящего из трех элементов:

Решение системы уравнений с помощью блока given find дает решение

Сделаем проверку, подставив полученные значения неизвестных в уравнения системы, например, следующим образом

Решение системы уравнений с помощью блока given find дает решение

После набора знака «=» в каждой строке должен быть получен результат, равный или приблизительно равный правой части системы. В данном примере системная переменная ORIGIN = 1.

2-й способ. Использование блока Given…Minerr.

Порядок решения системы этим способом аналогичен порядку использования блока Given … Find и представлен ниже вместе с проверкой:

Решение системы уравнений с помощью блока given find дает решение

3-й способ. Решение системы линейных уравнений матричным способом.

Создадим матрицу А, состоящую из коэффициентов при неизвестных системы. Для этого напечатаем A := , вызовем окно создания массивов (Ctrl + M). Число строк (Rows) и столбцов (Columns) матрицы данной системы равно 3. Заполним пустые места шаблона матрицы коэффициентами при неизвестных системы, как показано ниже:

Решение системы уравнений с помощью блока given find дает решение

Зададим вектор b свободных членов системы. Сначала напечатаем b :=, затем вставим шаблон матрицы(Ctrl + M), где количество строк (Rows) равно 3, а количество столбцов (Columns) равно 1. Заполним его:

Решение системы уравнений с помощью блока given find дает решение

Решим систему матричным способом по формуле

Решение системы уравнений с помощью блока given find дает решение

Решим систему с помощью функции lsolve:

Решение системы уравнений с помощью блока given find дает решение

Для проверки правильности решения системы, полученного матричным способом, достаточно вычислить произведение A·X, которое должно совпасть с вектором-столбцом свободных членов b:

Видео:Решение СЛАУ в пакете MathCadСкачать

Решение СЛАУ в пакете MathCad

Решение системы уравнений с помощью блока given find дает решение

Глава 4. Решение уравнений

4.4 Решение систем уравнений

Для решения систем уравнений нужно использовать вычислительный блок следующего вида:

1. Начальные приближения для всех переменных.

2. Ключевое слово Given (Дано).

3. Система уравнений (при записи уравнений надо использовать жирный знак равенства– клавиши Ctrl +=, так как это не знак присвоения значения, а оператор отношения).

4. Ограничения на поиск решения в виде неравенств, если они есть.

5. Выражение, содержащее функцию find , с неизвестными в качестве параметров.

Результат расчета – вектор решения системы. Вычислительный блок позволяет решать системы, содержащие от 1 до 200 уравнений.

Mathcad допускает использование двусторонних неравенств типа a ≤ x ≤ b . Операторы ≤ и ≥ выбираются на математической панели.

Решение, выданное функцией find , желательно проверить, подставив в уравнения найденные корни, так как в зависимости от начального приближения Mathcad может вывести корни, не имеющие физического смысла.

На рис. 4.9 показана проверка решения системы трех уравнений путем подстановки корней в уравнения , точка Z — точка пересечения трех поверхностей, координаты которой являются решением системы, обращающим все уравнения в тождества.

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеначальное приближение

Given Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение

проверка Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеРешение системы уравнений с помощью блока given find дает решение

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеРешение системы уравнений с помощью блока given find дает решение

Рис. 4. 9 Решение системы уравнений с помощью функции Find

При обычном ускоренном построении графика поверхности значения аргументов выбираются Mathcad автоматически в диапазоне от –5 до 5, что в нашем примере приводит к делению на ноль и невозможности построения графика. Пределы значений координат можно изменить. Для этого дважды щелкните мышью в поле графика и в открывшемся контекстном меню выберите страницу Quick Plot Data , на которой введите необходимые пределы для изменения переменных. Функция find реализует градиентные численные методы и предлагает на выбор три метода. Щелкните правой кнопкой мыши на названии функции find . В открывшемся контекстном меню и его подменю выберите нужный метод:

– Linear (Линейный метод) – метод касательной;

– Nonlinear (Нелинейный метод);

– Quadratic (Квадратичный метод).

Нелинейных методов три:

1) Conjiugate Gradient (Метод сопряженных градиентов);

2) Quasi – Newton (Квази – ньютоновский метод);

3) Levenberg – Marquart (Метод Левенберга).

Кроме выбора самого метода, нажав кнопку Advanced Options (Дополнительные параметры), можно выбрать:

1) оценку производной конечными разностями ( Derivate Estimation ):

– Forward (Вперед) – правая двухточечная схема;

– Central (Центральная) – трехточечная симметричная схема;

2) оценку переменной ( Variable Estimation ):

– Tangent (Касательная) – касательная – прямая линия,

– Quadratic (Квадратичная) – касательная – парабола;

3) проверку линейности:

Если вы уверены, что нелинейности всех функций, входящих в уравнения, ало влияют на значения их частных производных, то в пункте о проверке линейности выберите No . В этом случае производные будут приняты постоянными и не будут вычисляться на каждом шаге, что уменьшит время расчета.

К выбору метода расчета стоит обращаться, если вы хорошо разбираетесь в численных методах, и тогда, когда Mathcad не может найти решение. В большинстве же случаев лучше доверить выбор метода Mathcad , отметив пункт AutoSelect (Автоматический выбор).

Градиентные методы, реализованные функцией find , требуют многократного вычисления производных. При работе с достаточно гладкими функциями они обеспечивают быстрый и надежный поиск корня.

Решение системы уравнений с помощью блока given find дает решение Для поиска корня негладких функций одного переменной лучше использовать функцию root , реализующую метод секущих.

Как и функция root , функция find может использоваться в функциях пользователя для нахождения корней системы уравнений при переменных значениях параметров, перечисленных в названии функции пользователя ( рис. 4.10 и 4.11). Для системы уравнений решение выводится в виде массива, каждый столбец которого соответствует вектору решения для одной переменной.

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеначальные приближения

Given Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение

один из параметров делаем константой, другой варьируем

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениедля графика

Решение системы уравнений с помощью блока given find дает решениедля таблицы

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеРешение системы уравнений с помощью блока given find дает решение

Рис. 4. 10 Решение системы уравнений с переменными параметрами

Меняем оба параметра a и b

Диапазон изменения координат a и b задан на странице

Quick Plot Data окна форматирования

Решение системы уравнений с помощью блока given find дает решение

Рис. 4. 11 поверхность решений системы уравнений

Mathcad позволяет решать системы уравнений не только в скалярной, но и в матричной форме, при этом начальные условия и ограничения задаются в виде векторов (рис. 4.12).

Решение системы алгебраических линейных уравнений

А*Х=В путем обращения матрицы А

Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеРешение системы уравнений с помощью блока given find дает решение

Блок решения Given — find

начальное приближение Решение системы уравнений с помощью блока given find дает решение

Given Решение системы уравнений с помощью блока given find дает решение Решение системы уравнений с помощью блока given find дает решениеРешение системы уравнений с помощью блока given find дает решение

Решение системы уравнений с помощью блока given find дает решение

Функция root с матрицами работать не может

Рис. 4. 12 Решение системы уравнений в матричном виде

Решение системы уравнений с помощью блока given find дает решение Решение систем уравнение в символьном виде возможно с помощью функции find . Функция root в ранних версиях (до Mathcad 11 включительно) допускала символьное решение уравнений. В Mathcad 12,13,14 символьное решение уравнений с помощью функции root запрещено.

Решение системы уравнений с помощью блока given find дает решение Блоки решения уравнений не могут быть вложены друг в друга. Каждый блок может иметь только одно ключевое слово Given и одно имя find . Внутри блока решения нельзя использовать оператор присваивания х:=1, а нужно использовать знак логического равенства =(жирный знак равенства).

🔥 Видео

8. MathCad. Решение систем линейных алгебраических уравненийСкачать

8. MathCad. Решение систем линейных алгебраических уравнений

MathCAD Решение системы уравненийСкачать

MathCAD  Решение системы уравнений

Вычислительный блок Given Find в программе MathCADСкачать

Вычислительный блок Given Find в программе MathCAD

Решение систем линейных уравнений в MathCAD 14 (31/34)Скачать

Решение систем линейных уравнений в MathCAD 14 (31/34)

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

MathCAD  Решение уравнений с помощью функции root 1 вариант

Ключевое слово solve в MathCAD 14 (26/34)Скачать

Ключевое слово solve в MathCAD 14 (26/34)

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Пример решения уравнения в MathCAD 14 (33/34)Скачать

Пример решения уравнения в MathCAD 14 (33/34)

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Mathcad Prime. Урок 5 - Способы решения уравненийСкачать

Mathcad Prime. Урок 5 - Способы решения уравнений

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy
Поделиться или сохранить к себе: