Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.
Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).
Видео:2.1 Точные методы решения СЛАУ (Крамера, Гаусса, Жордана, прогонки)Скачать
Метод прогонки
Пример №1 . Решить задачу методом динамического программирования в прямом и обратном времени для целевой функции, заданной таблично.
F(x1,x2,x3) = f1(x1) + f2(x2) + f3(x3) → max
x1 + 2x2 + 2x3 ≤ 5
X | 0 | 1 | 2 | 3 | 4 | 5 |
f1(x1) | 6 | 7 | 11 | 12 | 15 | 16 |
f2(x2) | 9 | 11 | 13 | 15 | ||
f3(x3) | 8 | 12 | 14 | 16 |
Решение.
I этап. Условная оптимизация. f1(L) = max(f1); 0 ≤ x1 ≤ 5; x1 = 0,1,2,3,4,5.
f1(0) = max[6] = 6
f1(1) = max[6, 7] = 7
f1(2) = max[6, 7, 11] = 11
f1(3) = max[6, 7, 11, 12] = 12
f1(4) = max[6, 7, 11, 12, 15] = 15
f1(5) = max[6, 7, 11, 12, 15, 16] = 16
Таблица 1 – Расчет значения функции f1(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f1(L) | 6 | 7 | 11 | 12 | 15 | 16 |
x1 | 0 | 1 | 2 | 3 | 4 | 5 |
f2(L) = max[f2 + f1(L — 2x2)]; 0 ≤ x2 ≤ 5; x2 = 0,1,2,3,4,5.
f2(0) = max[9+6] = 15
f2(1) = max[9+7] = 16
f2(2) = max[9+11, 11+6] = 20
f2(3) = max[9+12, 11+7] = 21
f2(4) = max[9+15, 11+11, 13+6] = 24
f2(5) = max[9+16, 11+12, 13+7] = 25
Таблица 2 – Расчет значения функции f2(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f2(L) | 15 | 16 | 20 | 21 | 24 | 25 |
x2 | 0 | 0 | 0 | 0 | 0 | 0 |
f3(L) = max[f3 + f2(L — 2x3)]; 0 ≤ x3 ≤ 5; x3 = 0,1,2,3,4,5.
f3(0) = max[8+15] = 23
f3(1) = max[8+16] = 24
f3(2) = max[8+20, 12+15] = 28
f3(3) = max[8+21, 12+16] = 29
f3(4) = max[8+24, 12+20, 14+15] = 32
f3(5) = max[8+25, 12+21, 14+16] = 33
Таблица 3 – Расчет значения функции f3(L)
L | 0 | 1 | 2 | 3 | 4 | 5 |
f3(L) | 23 | 24 | 28 | 29 | 32 | 33 |
x3 | 0 | 0 | 0 | 0 | 0 | 0 |
II этап. Безусловная оптимизация.
Таким образом, максимум f3(5) = 33
При этом x3 = 0, так как f3(5) = 33 достигается при х3=0 (см. таблицу 3).
Остальные x распределяются следующим образом:
L = 5 — 2 * 0 = 5
f2(5) = 25 достигается при х2 = 0 (см. таблицу 2).
L = 5 — 2 * 0 = 5
f1(5) = 16 достигается при х1 = 5 (см. таблицу 1).
L = 5 — 1 * 5 = 0
В итоге наилучший вариант достигается при значениях: x1 = 5, x2 = 0, x3 = 0
Пример №2 . Рассмотрим задачу об оптимальном размещении капитала K = nh в m различных независимых фондах (банки, организации, фирма и т.д.), для которых известна ожидаемая прибыль fi при капиталовложениях xi = ih, i = 1..n. Здесь n – количество дискретных приращений h (дискрет), на которые разбит капитал К.
Пусть такие данные имеются по четырем (m=4) фондам для h = 1 млн. руб., n = 6
Решение.
I этап. Условная оптимизация.
1-й шаг: k = 4.
Предположим, что все средства в количестве x4 = 6 отданы 4-у предприятию. В этом случае максимальный доход, как это видно из таблицы 1*, составит 0.56, следовательно:
F4(c4) = g4(x4)
Таблица 1.
0 | x1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x4 | f0(x0) / F4(x4) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0.2 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 |
2 | 0.33 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 |
3 | 0.42 | 0 | 0 | 0 | 0.42 | 0 | 0 | 0 |
4 | 0.48 | 0 | 0 | 0.48 | 0 | 0 | 0 | 0 |
5 | 0.53 | 0 | 0.53 | 0 | 0 | 0 | 0 | 0 |
6 | 0.56 | 0.56* | 0 | 0 | 0 | 0 | 0 | 0 |
Таблица 1*.
c1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F0(c1) | 0 | 0.2 | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
x1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
2-й шаг: k = 3.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F3(c3) = max [ g3(x3) + F4(c3 — x3)]
Таблица 2.
0 | x2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x3 | f3(x3) / F3(x3) | 0 | 0.2 | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
0 | 0 | 0 | 0.2* | 0.33 | 0.42 | 0.48 | 0.53 | 0.56 |
1 | 0.15 | 0.15 | 0.35* | 0.48* | 0.57 | 0.63 | 0.68 | 0 |
2 | 0.25 | 0.25 | 0.45 | 0.58 | 0.67 | 0.73 | 0 | 0 |
3 | 0.4 | 0.4 | 0.6* | 0.73* | 0.82 | 0 | 0 | 0 |
4 | 0.5 | 0.5 | 0.7 | 0.83* | 0 | 0 | 0 | 0 |
5 | 0.62 | 0.62 | 0.82 | 0 | 0 | 0 | 0 | 0 |
6 | 0.73 | 0.73 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 2*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x2.
Таблица 2*.
c2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F3(c2) | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
x2 | 0 | 0 | 1 | 1 | 3 | 3 | 4 |
3-й шаг: k = 2.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F2(c2) = max [ g2(x2) + F3(c2 — x2)]
Таблица 3.
0 | x3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x2 | f4(x4) / F2(x2) | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
0 | 0 | 0 | 0.2 | 0.35 | 0.48 | 0.6 | 0.73 | 0.83 |
1 | 0.25 | 0.25* | 0.45* | 0.6 | 0.73 | 0.85 | 0.98 | 0 |
2 | 0.41 | 0.41 | 0.61* | 0.76* | 0.89 | 1.01 | 0 | 0 |
3 | 0.55 | 0.55 | 0.75 | 0.9* | 1.03* | 0 | 0 | 0 |
4 | 0.65 | 0.65 | 0.85 | 1 | 0 | 0 | 0 | 0 |
5 | 0.75 | 0.75 | 0.95 | 0 | 0 | 0 | 0 | 0 |
6 | 0.8 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 3*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x3.
Таблица 3*.
c3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F4(c3) | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
x3 | 0 | 1 | 1 | 2 | 2 | 3 | 3 |
4-й шаг: k = 1.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F1(c1) = max [ g1(x1) + F2(c1 — x1)]
Таблица 4.
0 | x4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
x1 | f5(x5) / F1(x1) | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
0 | 0 | 0 | 0.25 | 0.45 | 0.61 | 0.76 | 0.9 | 1.03 |
1 | 0.28 | 0.28* | 0.53* | 0.73* | 0.89 | 1.04 | 1.18 | 0 |
2 | 0.45 | 0.45 | 0.7 | 0.9 | 1.06 | 1.21 | 0 | 0 |
3 | 0.65 | 0.65 | 0.9* | 1.1* | 1.26* | 0 | 0 | 0 |
4 | 0.78 | 0.78 | 1.03 | 1.23 | 0 | 0 | 0 | 0 |
5 | 0.9 | 0.9 | 1.15 | 0 | 0 | 0 | 0 | 0 |
6 | 1.02 | 1.02 | 0 | 0 | 0 | 0 | 0 | 0 |
Заполняем таблицу 4*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x4.
Таблица 4*.
c4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
F5(c4) | 0 | 0.28 | 0.53 | 0.73 | 0.9 | 1.1 | 1.26 |
x4 | 0 | 1 | 1 | 1 | 3 | 3 | 3 |
II этап. Безусловная оптимизация.
1-й шаг: k = 1.
По данным таблицы 4* максимальный доход при распределении 6 между предприятиями составляет c1 = 6, F1(6) = 1.26. При этом 1-му предприятию нужно выделить x1 = 3.
2-й шаг: k = 2.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c2 = c1 — x1 = 6 — 3 = 3.
По данным таблицы 3* максимальный доход при распределении 3 между предприятиями составляет c2 = 3, F2(3) = 0.61. При этом 2-му предприятию нужно выделить x2 = 2.
3-й шаг: k = 3.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c3 = c2 — x2 = 3 — 2 = 1.
По данным таблицы 2* максимальный доход при распределении 1 между предприятиями составляет c3 = 1, F3(1) = 0.2. При этом 3-му предприятию нужно выделить x3 = 0.
4-й шаг: k = 4.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c4 = c3 — x3 = 1 — 0 = 1.
По данным таблицы 1* максимальный доход при распределении 1 между предприятиями составляет c4 = 1, F4(1) = 0.20. При этом 4-му предприятию нужно выделить x4 = 1.
Таким образом, оптимальный план инвестирования предприятия: x1 = 3, x2 = 2, x3 = 0, x4 = 1, который обеспечит максимальный доход, равный: F(6) = g1(3) + g2(2) + g3(0) + g4(1) = 0.65 + 0.41 + 0 + 0.20 = 1.26.
Пример №3 . Распределите c=200 млн ден. ед. инвестиций между четырьмя министерствами республики ( n=4 ) на реконструкцию и модернизацию производственных мощностей таким образом, чтобы суммарный прирост производства продукции всех министерств f4(с) был максимальным. Прирост выпуска продукции в каждом из министерств gi(x) в зависимости от объема выделенных средств x (0 c=200 млн ден. ед. между первыми тремя министерствами, максимизирующее их суммарный прирост производства продукции f3(с).
Примечание. Основная задача решается с помощью процедуры прямой прогонки. Ответ на подзадачу можно получить из таблицы n-1 исходного решения.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Решение систем линейных уравнений онлайн
Решение систем линейных уравнений онлайн – это нахождение неизвестных переменных входящих в уравнения, при подстановке которых система обращается в равенство.
Решить систему линейных уравнений можно различными способами, например используя метод Крамера и метод Гаусса, метод Жордана Гаусса и метод Кронекера Капелли, или другими способами. Используя наш сервис, вы можете бесплатно в режиме онлайн получить решения разными способами с пошаговыми действиями и пояснениями. Наш калькулятор будет также полезен, если вам необходимо проверить выполненные самостоятельно вычисления.
Наш онлайн сервис позволяет решать системы линейных алгебраических уравнений различными способами:
- методом Крамера (правило Крамера)
- методом обратной матрицы
- методом Гаусса-Монтанте (алгоритм Барейса)
- методом Гаусса (метод последовательного исключения переменных)
- методом Гаусса-Жордана (метод полного исключения неизвестных)
При этом сервис предоставляет последовательность решения, а не только ответ.
Дополнительно вы сможете проверить систему уравнений на совместимость.
🌟 Видео
Решение системы уравнений методом ГауссаСкачать
VB.net - СЛАУ Метод прогонкиСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
6-5. Алгоритм прогонкиСкачать
Решение системы линейных уравнений методом ГауссаСкачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать
Матричный метод решения систем уравненийСкачать
6 способов в одном видеоСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Базисные решения систем линейных уравнений (03)Скачать
Графический метод решения систем линейных уравнений 7 классСкачать
Метод Гаусса решения систем линейных уравненийСкачать
Метод прогонкиСкачать
Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать
Решение системы уравнений методом Крамера 2x2Скачать