Решение систем уравнений теории вероятности

Системы случайных величин

Назначение сервиса . С помощью сервиса по заданному закону распределения можно найти:

  • ряды распределения X и Y, математическое ожидание M[X], M[Y], дисперсию D[X], D[Y];
  • ковариацию cov(x,y), коэффициент корреляции rx,y, условный ряд распределения X, условное математическое ожидание M[X/Y=yi];

Кроме этого, дается ответ на вопрос, «зависимы ли случайные величины X и Y ?».

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Пример №1 . Двумерная дискретная случайная величина имеет таблицу распределения:

Y/X1234
1000,110,120,03
2000,130,090,02
300,020,110,080,01
400,030,110,05q

Найти величину q и коэффициент корреляции этой случайной величины.

Решение. Величину q найдем из условия Σpij = 1
Σpij = 0,02 + 0,03 + 0,11 + … + 0,03 + 0,02 + 0,01 + q = 1
0.91+q = 1. Откуда q = 0.09
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X10203040
P0.260.240.220.28∑Pi = 1

Математическое ожидание M[X] = 10*0.26 + 20*0.24 + 30*0.22 + 40*0.28 = 25.2
Дисперсия D[X] = 10 2 *0.26 + 20 2 *0.24 + 30 2 *0.22 + 40 2 *0.28 — 25.2 2 = 132.96
Среднее квадратическое отклонение σ(x) = sqrt(D[X]) = sqrt(132.96) = 11.531

Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y1234
P0.050.460.340.15∑Pi = 1

Математическое ожидание M[Y].
M[y] = 1*0.05 + 2*0.46 + 3*0.34 + 4*0.15 = 2.59
Дисперсия D[Y] = 1 2 *0.05 + 2 2 *0.46 + 3 2 *0.34 + 4 2 *0.15 — 2.59 2 = 0.64
Среднее квадратическое отклонение σ(y) = sqrt(D[Y]) = sqrt(0.64) = 0.801

Ковариация cov(X,Y) = M[X·Y] — M[X]·M[Y] = 2·10·0.11 + 3·10·0.12 + 4·10·0.03 + 2·20·0.13 + 3·20·0.09 + 4·20·0.02 + 1·30·0.02 + 2·30·0.11 + 3·30·0.08 + 4·30·0.01 + 1·40·0.03 + 2·40·0.11 + 3·40·0.05 + 4·40·0.09 — 25.2 · 2.59 = -0.068
Коэффициент корреляции rxy = cov(x,y)/σ(x)&sigma(y) = -0.068/(11.531*0.801) = -0.00736

Пример 2 . Данные статистической обработки сведений относительно двух показателей X и Y отражены в корреляционной таблице. Требуется:

  1. написать ряды распределения для X и Y и вычислить для них выборочные средние и выборочные средние квадратические отклонения;
  2. написать условные ряды распределения Y/x и вычислить условные средние Y/x;
  3. изобразить графически зависимость условных средних Y/x от значений X;
  4. рассчитать выборочный коэффициент корреляции Y на X;
  5. написать выборочное уравнение прямой регрессии;
  6. изобразить геометрически данные корреляционной таблицы и построить прямую регрессии.

Решение. Упорядоченная пара (X,Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y.
Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины.
Дискретная двумерная случайная величина (X,Y) считается заданной, если известен ее закон распределения:
P(X=xi, Y=yj) = pij, i=1,2. n, j=1,2. m

X / Y2030405060
1120000
1646000
2103620
26004584
3100467
3600003

События (X=xi, Y=yj) образуют полную группу событий, поэтому сумма всех вероятностей pij(i=1,2. n, j=1,2. m), указанных в таблице, равна 1.
1. Зависимость случайных величин X и Y.
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X111621263136
P2101157173∑Pi = 100

Математическое ожидание M[X].
M[x] = (11*2 + 16*10 + 21*11 + 26*57 + 31*17 + 36*3 )/100 = 25.3
Дисперсия D[X].
D[X] = (11 2 *2 + 16 2 *10 + 21 2 *11 + 26 2 *57 + 31 2 *17 + 36 2 *3 )/100 — 25.3 2 = 24.01
Среднее квадратическое отклонение σ(x).
Решение систем уравнений теории вероятности
Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y2030405060
P69551614∑Pi = 100

Математическое ожидание M[Y].
M[y] = (20*6 + 30*9 + 40*55 + 50*16 + 60*14 )/100 = 42.3
Дисперсия D[Y].
D[Y] = (20 2 *6 + 30 2 *9 + 40 2 *55 + 50 2 *16 + 60 2 *14 )/100 — 42.3 2 = 99.71
Среднее квадратическое отклонение σ(y).
Решение систем уравнений теории вероятности
Поскольку, P(X=11,Y=20) = 2≠2·6, то случайные величины X и Y зависимы.
2. Условный закон распределения X.
Условный закон распределения X(Y=20).
P(X=11/Y=20) = 2/6 = 0.33
P(X=16/Y=20) = 4/6 = 0.67
P(X=21/Y=20) = 0/6 = 0
P(X=26/Y=20) = 0/6 = 0
P(X=31/Y=20) = 0/6 = 0
P(X=36/Y=20) = 0/6 = 0
Условное математическое ожидание M[X/Y=20).
M[X/Y=y] = 11*0.33 + 16*0.67 + 21*0 + 26*0 + 31*0 + 36*0 = 14.33
Условная дисперсия D[X/Y=20).
D[X/Y=y] = 11 2 *0.33 + 16 2 *0.67 + 21 2 *0 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 14.33 2 = 5.56
Условный закон распределения X(Y=30).
P(X=11/Y=30) = 0/9 = 0
P(X=16/Y=30) = 6/9 = 0.67
P(X=21/Y=30) = 3/9 = 0.33
P(X=26/Y=30) = 0/9 = 0
P(X=31/Y=30) = 0/9 = 0
P(X=36/Y=30) = 0/9 = 0
Условное математическое ожидание M[X/Y=30).
M[X/Y=y] = 11*0 + 16*0.67 + 21*0.33 + 26*0 + 31*0 + 36*0 = 17.67
Условная дисперсия D[X/Y=30).
D[X/Y=y] = 11 2 *0 + 16 2 *0.67 + 21 2 *0.33 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 17.67 2 = 5.56
Условный закон распределения X(Y=40).
P(X=11/Y=40) = 0/55 = 0
P(X=16/Y=40) = 0/55 = 0
P(X=21/Y=40) = 6/55 = 0.11
P(X=26/Y=40) = 45/55 = 0.82
P(X=31/Y=40) = 4/55 = 0.0727
P(X=36/Y=40) = 0/55 = 0
Условное математическое ожидание M[X/Y=40).
M[X/Y=y] = 11*0 + 16*0 + 21*0.11 + 26*0.82 + 31*0.0727 + 36*0 = 25.82
Условная дисперсия D[X/Y=40).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.11 + 26 2 *0.82 + 31 2 *0.0727 + 36 2 *0 — 25.82 2 = 4.51
Условный закон распределения X(Y=50).
P(X=11/Y=50) = 0/16 = 0
P(X=16/Y=50) = 0/16 = 0
P(X=21/Y=50) = 2/16 = 0.13
P(X=26/Y=50) = 8/16 = 0.5
P(X=31/Y=50) = 6/16 = 0.38
P(X=36/Y=50) = 0/16 = 0
Условное математическое ожидание M[X/Y=50).
M[X/Y=y] = 11*0 + 16*0 + 21*0.13 + 26*0.5 + 31*0.38 + 36*0 = 27.25
Условная дисперсия D[X/Y=50).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.13 + 26 2 *0.5 + 31 2 *0.38 + 36 2 *0 — 27.25 2 = 10.94
Условный закон распределения X(Y=60).
P(X=11/Y=60) = 0/14 = 0
P(X=16/Y=60) = 0/14 = 0
P(X=21/Y=60) = 0/14 = 0
P(X=26/Y=60) = 4/14 = 0.29
P(X=31/Y=60) = 7/14 = 0.5
P(X=36/Y=60) = 3/14 = 0.21
Условное математическое ожидание M[X/Y=60).
M[X/Y=y] = 11*0 + 16*0 + 21*0 + 26*0.29 + 31*0.5 + 36*0.21 = 30.64
Условная дисперсия D[X/Y=60).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0 + 26 2 *0.29 + 31 2 *0.5 + 36 2 *0.21 — 30.64 2 = 12.37
3. Условный закон распределения Y.
Условный закон распределения Y(X=11).
P(Y=20/X=11) = 2/2 = 1
P(Y=30/X=11) = 0/2 = 0
P(Y=40/X=11) = 0/2 = 0
P(Y=50/X=11) = 0/2 = 0
P(Y=60/X=11) = 0/2 = 0
Условное математическое ожидание M[Y/X=11).
M[Y/X=x] = 20*1 + 30*0 + 40*0 + 50*0 + 60*0 = 20
Условная дисперсия D[Y/X=11).
D[Y/X=x] = 20 2 *1 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 20 2 = 0
Условный закон распределения Y(X=16).
P(Y=20/X=16) = 4/10 = 0.4
P(Y=30/X=16) = 6/10 = 0.6
P(Y=40/X=16) = 0/10 = 0
P(Y=50/X=16) = 0/10 = 0
P(Y=60/X=16) = 0/10 = 0
Условное математическое ожидание M[Y/X=16).
M[Y/X=x] = 20*0.4 + 30*0.6 + 40*0 + 50*0 + 60*0 = 26
Условная дисперсия D[Y/X=16).
D[Y/X=x] = 20 2 *0.4 + 30 2 *0.6 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 26 2 = 24
Условный закон распределения Y(X=21).
P(Y=20/X=21) = 0/11 = 0
P(Y=30/X=21) = 3/11 = 0.27
P(Y=40/X=21) = 6/11 = 0.55
P(Y=50/X=21) = 2/11 = 0.18
P(Y=60/X=21) = 0/11 = 0
Условное математическое ожидание M[Y/X=21).
M[Y/X=x] = 20*0 + 30*0.27 + 40*0.55 + 50*0.18 + 60*0 = 39.09
Условная дисперсия D[Y/X=21).
D[Y/X=x] = 20 2 *0 + 30 2 *0.27 + 40 2 *0.55 + 50 2 *0.18 + 60 2 *0 — 39.09 2 = 44.63
Условный закон распределения Y(X=26).
P(Y=20/X=26) = 0/57 = 0
P(Y=30/X=26) = 0/57 = 0
P(Y=40/X=26) = 45/57 = 0.79
P(Y=50/X=26) = 8/57 = 0.14
P(Y=60/X=26) = 4/57 = 0.0702
Условное математическое ожидание M[Y/X=26).
M[Y/X=x] = 20*0 + 30*0 + 40*0.79 + 50*0.14 + 60*0.0702 = 42.81
Условная дисперсия D[Y/X=26).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.79 + 50 2 *0.14 + 60 2 *0.0702 — 42.81 2 = 34.23
Условный закон распределения Y(X=31).
P(Y=20/X=31) = 0/17 = 0
P(Y=30/X=31) = 0/17 = 0
P(Y=40/X=31) = 4/17 = 0.24
P(Y=50/X=31) = 6/17 = 0.35
P(Y=60/X=31) = 7/17 = 0.41
Условное математическое ожидание M[Y/X=31).
M[Y/X=x] = 20*0 + 30*0 + 40*0.24 + 50*0.35 + 60*0.41 = 51.76
Условная дисперсия D[Y/X=31).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.24 + 50 2 *0.35 + 60 2 *0.41 — 51.76 2 = 61.59
Условный закон распределения Y(X=36).
P(Y=20/X=36) = 0/3 = 0
P(Y=30/X=36) = 0/3 = 0
P(Y=40/X=36) = 0/3 = 0
P(Y=50/X=36) = 0/3 = 0
P(Y=60/X=36) = 3/3 = 1
Условное математическое ожидание M[Y/X=36).
M[Y/X=x] = 20*0 + 30*0 + 40*0 + 50*0 + 60*1 = 60
Условная дисперсия D[Y/X=36).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *1 — 60 2 = 0
Ковариация.
cov(X,Y) = M[X·Y] — M[X]·M[Y]
cov(X,Y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 25.3 · 42.3 = 38.11
Если случайные величины независимы, то их ковариации равна нулю. В нашем случае cov(X,Y) ≠ 0.
Коэффициент корреляции.
Решение систем уравнений теории вероятности
Решение систем уравнений теории вероятности
Уравнение линейной регрессии с y на x имеет вид:
Решение систем уравнений теории вероятности
Уравнение линейной регрессии с x на y имеет вид:
Решение систем уравнений теории вероятности
Найдем необходимые числовые характеристики.
Выборочные средние:
x = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 42.3
y = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 25.3
Дисперсии:
σ 2 x = (20 2 (2 + 4) + 30 2 (6 + 3) + 40 2 (6 + 45 + 4) + 50 2 (2 + 8 + 6) + 60 2 (4 + 7 + 3))/100 — 42.3 2 = 99.71
σ 2 y = (11 2 (2) + 16 2 (4 + 6) + 21 2 (3 + 6 + 2) + 26 2 (45 + 8 + 4) + 31 2 (4 + 6 + 7) + 36 2 (3))/100 — 25.3 2 = 24.01
Откуда получаем среднеквадратические отклонения:
σx = 9.99 и σy = 4.9
и ковариация:
Cov(x,y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 42.3 · 25.3 = 38.11
Определим коэффициент корреляции:
Решение систем уравнений теории вероятности
Решение систем уравнений теории вероятности
Запишем уравнения линий регрессии y(x):
Решение систем уравнений теории вероятности
и вычисляя, получаем:
yx = 0.38 x + 9.14
Запишем уравнения линий регрессии x(y):
Решение систем уравнений теории вероятности
и вычисляя, получаем:
xy = 1.59 y + 2.15
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (42.3; 25.3) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции.
Решение систем уравнений теории вероятности
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=100-m-1 = 98 находим tкрит:
tкрит (n-m-1;α/2) = (98;0.025) = 1.984
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.

Задание. Количество попаданий пар значений случайных величин X и Y в соответствующие интервалы приведены в таблице. По этим данным найти выборочный коэффициент корреляции и выборочные уравнения прямых линий регрессии Y на X и X на Y .
Решение

Пример. Распределение вероятностей двумерной случайной величины (X, Y) задано таблицей. Найти законы распределения составляющих величин X, Y и коэффициент корреляции p(X, Y).
Скачать решение

Задание. Двумерная дискретная величина (X, Y) задана законом распределения. Найти законы распределения составляющих X и Y, ковариацию и коэффициент корреляции.

Видео:Теория вероятностей | Математика TutorOnlineСкачать

Теория вероятностей | Математика TutorOnline

Теория вероятности формулы и примеры решения задач

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Видео:Математика без Ху!ни. Теория вероятностей, комбинаторная вероятность.Скачать

Математика без Ху!ни. Теория вероятностей, комбинаторная вероятность.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Решение систем уравнений теории вероятности

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом Решение систем уравнений теории вероятности.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Решение систем уравнений теории вероятности.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. Решение систем уравнений теории вероятности.
  2. Вероятность невозможного события равна 0, т.е. Решение систем уравнений теории вероятности.
  3. Вероятность достоверного события равна 1, т.e. Решение систем уравнений теории вероятности.
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. Решение систем уравнений теории вероятности.

Важным частным случаем является ситуация, когда имеется Решение систем уравнений теории вероятностиравновероятных элементарных исходов, и произвольные Решение систем уравнений теории вероятностииз этих исходов образуют события А. В этом случае вероятность можно ввести по формуле Решение систем уравнений теории вероятности. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов Решение систем уравнений теории вероятности, прямо в условии написано число всех исходов Решение систем уравнений теории вероятности.

Решение систем уравнений теории вероятности

Ответ получаем по формуле Решение систем уравнений теории вероятности.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть Решение систем уравнений теории вероятности, где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Решение систем уравнений теории вероятности

Видео:Теория вероятностей #8: формула Бернулли и примеры ее использования при решении задачСкачать

Теория вероятностей #8: формула Бернулли и примеры ее использования при решении задач

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. Решение систем уравнений теории вероятности.

Видео:Разбор 33 варианта ОГЭ по математике 2024 / ПДФ решение + формулы / МатТаймСкачать

Разбор 33 варианта ОГЭ по математике 2024 / ПДФ решение + формулы / МатТайм

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. Решение систем уравнений теории вероятности.

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае Решение систем уравнений теории вероятности.

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение Решение систем уравнений теории вероятности, которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов Решение систем уравнений теории вероятностиВ нашем случае Решение систем уравнений теории вероятности.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение Решение систем уравнений теории вероятности.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

Решение систем уравнений теории вероятности

В нашем случае Решение систем уравнений теории вероятности.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: Решение систем уравнений теории вероятности. В общем случае ответ на этот вопрос дает формула для числа сочетаний из Решение систем уравнений теории вероятностиэлементов по Решение систем уравнений теории вероятностиэлементам:

Решение систем уравнений теории вероятности

В нашем случае Решение систем уравнений теории вероятности.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение систем уравнений теории вероятности.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Решение систем уравнений теории вероятности

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Решение систем уравнений теории вероятности.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Решение систем уравнений теории вероятности

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: Решение систем уравнений теории вероятности— лампочка горит, Решение систем уравнений теории вероятности— лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: Решение систем уравнений теории вероятности, где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: Решение систем уравнений теории вероятности.

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Решение систем уравнений теории вероятностиРешение систем уравнений теории вероятности

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: Решение систем уравнений теории вероятности.

Еще одну задачку вы можете посмотреть на рисунке:

Решение систем уравнений теории вероятности

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Видео:Математика без Ху!ни. Теория вероятностей. Схема БернуллиСкачать

Математика без Ху!ни. Теория вероятностей. Схема Бернулли

Теория вероятностей, формулы и примеры

Решение систем уравнений теории вероятности

О чем эта статья:

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Видео:№3,4 Теория вероятностей из ЕГЭ по профильной математике | Интенсив "Щелчок"Скачать

№3,4 Теория вероятностей из ЕГЭ по профильной математике | Интенсив "Щелчок"

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

Решение систем уравнений теории вероятности

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Видео:Решение системы неравенствСкачать

Решение системы неравенств

Событие и виды событий

Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

A0 — в результате броска монеты выпадет орел;

Ā0 — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Видео:Вся теория вероятностей для экзамена за 20 минут. ЕГЭ профильный, Базовый, ОГЭСкачать

Вся теория вероятностей для экзамена за 20 минут. ЕГЭ профильный, Базовый, ОГЭ

Алгебра событий

Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.

Сложение событий

Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.

Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.

Событие (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие B1,2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.

Умножение событий

Произведением двух событий A И B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3. и событие A10.

Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:

A1 — на 1-й монете выпадет орел;

Ā1 — на 1-й монете выпадет решка;

A2 — на 2-й монете выпадет орел;

Ā2 — на 2-й монете выпадет решка.

событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;

событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;

событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;

событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.

Видео:Решение задач по теории вероятностей | Часть 1Скачать

Решение задач по теории вероятностей | Часть 1

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

Вероятность достоверного события равна единице.

Вероятность невозможного события равна нулю.

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как решать задачи по теории вероятности

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

📸 Видео

Теория вероятностей #11: формула полной вероятности, формула БайесаСкачать

Теория вероятностей #11: формула полной вероятности, формула Байеса

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Математика это не ИсламСкачать

Математика это не Ислам

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

18+ Математика без Ху!ни. Теория вероятностей, часть 1.Скачать

18+ Математика без Ху!ни. Теория вероятностей, часть 1.

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.
Поделиться или сохранить к себе: