Решение систем уравнений симплекс методом

Видео:Cимплексный метод решения задачи линейного программирования (ЗЛП)Скачать

Cимплексный метод решения задачи линейного программирования (ЗЛП)

Симплекс метод онлайн

Данный онлайн калькулятор решает задачу линейного программирования симплекс методом. Дается подробное решение с пояснениями. Для решения задачи линейного программирования задайте количество ограничений и количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить». Теоретическую часть смотрите в статье: Решение задачи линейного программирования. Симплекс метод.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:СИМПЛЕКС МЕТОД: ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯСкачать

СИМПЛЕКС МЕТОД: ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Симплекс метод

Симплекс метод − это метод решения задачи линейного программирования (ЗЛП). Суть метода заключается в нахождении начального допустимого плана, и в последующем улучшении плана до достижения максимального (или минимального) значения целевой функции в данном выпуклом многогранном множестве или выяснения неразрешимости задачи. Подробнее в статье: Решение задачи линейного программирования. Симплекс метод.

Видео:Симплекс-метод. Простое объяснение.Скачать

Симплекс-метод. Простое объяснение.

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Решение систем уравнений симплекс методом

Р е ш е н и е. Матрица коэффициентов Решение систем уравнений симплекс методомсистемы уравнений имеет вид:

Решение систем уравнений симплекс методом

Правая часть ограничений системы уравнений имеет вид:

Решение систем уравнений симплекс методом

Составляем симплексную таблицу. В столбец x0 записывается правая часть ограничений. С правой стороны записывается матрица коэффициентов A. Последняя строка — это целевая функция, умноженная на −1. Последние три векторы столбцы обазуют базис в трехмерном пространствое. Следовательно базисные переменные Решение систем уравнений симплекс методом, а свободные переменные Решение систем уравнений симплекс методом:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x2. Определяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом. min(40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x3. Сделаем исключение Гаусса для столбца x2, учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x1. Определяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом. min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x4. Сделаем исключение Гаусса для столбца x1, учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Текущий опорный план является оптимальным, так как в строках 4 под переменными Решение систем уравнений симплекс методомнет отрицательных элементов.

Решение можно записать так: Решение систем уравнений симплекс методомРешение систем уравнений симплекс методомРешение систем уравнений симплекс методом.

Значение целевой функции в данной точке: F(X)=Решение систем уравнений симплекс методомРешение систем уравнений симплекс методом.

Пример 2. Найти максимум функции

Решение систем уравнений симплекс методом
Решение систем уравнений симплекс методом

Р е ш е н и е. Матрица коэффициентов Решение систем уравнений симплекс методомсистемы уравнений имеет вид:

Решение систем уравнений симплекс методом

Правая часть ограничений системы уравнений имеет вид:

Решение систем уравнений симплекс методом

Составляем симплексную таблицу. В столбец x0 записывается правая часть ограничений. С правой стороны записывается матрица коэффициентов A. Последняя строка — это целевая функция, умноженная на −1:

Решение систем уравнений симплекс методом

Базисные векторы x4, x3, следовательно, все элементы в столбцах x4, x3, ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x4, кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x3, кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x2. Определяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом. Все Решение систем уравнений симплекс методомследовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Решение систем уравнений симплекс методом
Решение систем уравнений симплекс методом

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:

Решение систем уравнений симплекс методом

Матрица коэффициентов Решение систем уравнений симплекс методомсистемы уравнений имеет вид:

Решение систем уравнений симплекс методом

Правая часть ограничений системы уравнений имеет вид:

Решение систем уравнений симплекс методом

Составляем симплексную таблицу. В столбец x0 записывается правая часть ограничений. С правой стороны записывается матрица коэффициентов A. Последние две строки − это целевая функция, умноженная на −1 и разделенная на две части. Последняя строка − строка с исскуственными переменными:

Решение систем уравнений симплекс методом

Базисные векторы Решение систем уравнений симплекс методомследовательно, все элементы в столбцах Решение систем уравнений симплекс методомниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца Решение систем уравнений симплекс методомкроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Решение систем уравнений симплекс методомОпределяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом Решение систем уравнений симплекс методомсоответствует строке 3. Из базиса выходит вектор Решение систем уравнений симплекс методомСделаем исключение Гаусса для столбца Решение систем уравнений симплекс методомучитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Решение систем уравнений симплекс методомОпределяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом Решение систем уравнений симплекс методомсоответствует строке 1. Из базиса выходит вектор x2. Сделаем исключение Гаусса для столбца x1, учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x3. Определяем, какой вектор выходит из базиса. Для этого вычисляем Решение систем уравнений симплекс методомпри Решение систем уравнений симплекс методом Решение систем уравнений симплекс методомсоответствует строке 3. Из базиса выходит вектор x5. Сделаем исключение Гаусса для столбца x3, учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными Решение систем уравнений симплекс методомнет отрицательных элементов.

Решение исходной задачи можно записать так:

Решение систем уравнений симплекс методомРешение систем уравнений симплекс методом.

Значение целевой функции в данной точке:

Решение систем уравнений симплекс методомРешение систем уравнений симплекс методом.

Пример 2. Найти оптимальный план задачи линейного программирования:

Решение систем уравнений симплекс методом

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственные переменные, а в целевую функцию добавляем эти переменные, умноженные на −M, где M, очень большое число:

Решение систем уравнений симплекс методом

Матрица коэффициентов Решение систем уравнений симплекс методомсистемы уравнений имеет вид:

Решение систем уравнений симплекс методом

Правая часть ограничений системы уравнений имеет вид:

Решение систем уравнений симплекс методом

Составляем симплексную таблицу. В столбец x0 записывается правая часть ограничений. С правой стороны записывается матрица коэффициентов A. Последние две строки − это целевая функция, умноженная на −1 и разделенная на две части. Последняя строка − строка с исскуственными переменными:

Решение систем уравнений симплекс методом

Базисные векторы x4, x5, x6, следовательно, все элементы в столбцах x4, x5, x6, ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x4, кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x5, кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x6, кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Решение систем уравнений симплекс методом

Запишем текущий опорный план:

Решение систем уравнений симплекс методом

В строке 5 элементы, соответствующие переменным x1, x2, x3, x4, x5, x6 неотрицательны, а число находящийся в пересечении данной строки и столбца x0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Видео:Симплексный метод (табличный оформление №1) решения задачи линейного программирования.Скачать

Симплексный метод (табличный оформление №1)  решения задачи линейного программирования.

Симплексный метод решения ЗЛП

Назначение сервиса . Сервис предназначен для онлайн решения задач линейного программирования (ЗЛП) симплекс-методом в следующих формах записи:

  • в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
  • модифицированным симплекс-методом; в столбцовой форме; в строчечной форме.
  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word
  • Также решают

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях)Доход G(X)
123
0000
1283032
2414245
3505548
4626460
5767672

Алгоритм симплекс-метода включает следующие этапы:

  1. Составление первого опорного плана. Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
  2. Проверка плана на оптимальность. Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
  3. Определение ведущих столбца и строки. Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
  4. Построение нового опорного плана. Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана—Гаусса.
БазисBx1x2x3x4min
x320521020:5=4
x4611016:1=6
F(X1)-8-5000

Если необходимо найти экстремум целевой функции, то речь идет о поиске минимального значения ( F(x) → min , см. пример решения минимизации функции) и максимального значения ( F(x) → max , см. пример решения максимизации функции)

Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

Основная теорема линейного программирования . Если целевая функция ЗЛП достигает экстремального значения в некоторой точке области допустимых решений, то она принимает это значение в угловой точке. Если целевая функция ЗЛП достигает экстремального значения более чем в одной угловой точке, то она принимает это же значение в любой из выпуклой линейной комбинации этих точек.

Суть симплекс-метода. Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к Xопт. Такую схему перебора точек, называемую симплекс-метод, предложил Р. Данцигом.
Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации.

Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение.

Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

Замечание 1 . Если одна из базисных переменных равна нулю, то крайняя точка, соответствующая такому базисному решению — вырожденная. Вырожденность возникает, когда имеется неоднозначность в выборе направляющей строки. Можно вообще не заметить вырожденности задачи, если выбрать другую строку в качестве направляющей. В случае неоднозначности нужно выбирать строку с наименьшим индексом, чтобы избежать зацикливания.

Замечание 2 . Пусть в некоторой крайней точке все симплексные разности неотрицательные Dk³ 0 (k = 1..n+m),т.е. получено оптимальное решение и существует такой Аk – небазисный вектор, у которого Dk = 0. Тогда максимум достигается по крайней мере в двух точках, т.е. имеет место альтернативный оптимум. Если ввести в базис эту переменную xk, значение целевой функции не изменится.

Замечание 3 . Решение двойственной задачи находится в последней симплексной таблице. Последние m компонент вектора симплексных разностей( в столбцах балансовых переменных) – оптимальное решение двойственной задачи. Значение целевых функций прямой и двойственной задачи в оптимальных точках совпадают.

Замечание 4 . При решении задачи минимизации в базис вводится вектор с наибольшей положительной симплексной разностью. Далее применяется тот же алгоритм, что и для задачи максимизации.

Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

Видео:Графический метод решения задачи линейного программирования (ЗЛП)Скачать

Графический метод решения задачи линейного программирования (ЗЛП)

Аналитическое введение в симплекс-метод

Итак, если мы решаем ЗЛП в канонической форме, то система ограничений — это обычная система линейных уравнений. При решении задач ЛП получаются системы линейных уравнений, имеющие, как правило, бесконечно много решений.

Например, пусть дана система
Решение систем уравнений симплекс методом

Здесь число уравнений равно 2, а неизвестных — 3, уравнений меньше. Выразим x1 и x2 через x3 :
Решение систем уравнений симплекс методом

Это общее решение системы. если переменной x3 придавать произвольные числовые значения, то будем находить частные решения системы. Например, x3=1 → x1=1 → x2=6. Имеем (1, 6, 1) — частное решение. Пусть x3=2 → x1=-3, x2= 1, (-3, 1, 2) — другое частное решение. Таких частных решений бесконечно много.

Переменные x1 и x2 называются базисными, а переменная x3не базисная, свободная.

Совокупность переменных x1 и x2 образует базис: Б (x1, x2). Если x3 = 0, то полученное частное решение (5, 11, 0) называется базисным решением, соответствующим базису Б (x1, x2).

Базисным называется решение, соответствующее нулевым значениям свободных переменных.
В качестве базисных можно было взять и другие переменные: (x1, x3) или (x2, x3).
Как переходить от одного базиса Б(x1, x2) к другому базису Б(x1, x3)?
Для этого надо переменную x3 перевести в базисные, а x2 — в небазисные т. е. в уравнениях надо x3 выразить через x2 и подставить в 1-е:

Решение систем уравнений симплекс методом

Базисное решение, соответствующее базису Б (x1, x3), таково: (-19/5; 0; 11/5).

Если теперь от базиса Б (x1, x3) нам захочется перейти к базису Б (x2, x3), то
Решение систем уравнений симплекс методом

Базисное решение, соответствующее базису Б (x2, x3): (0;19/4; 7/8).
Из трех найденных базисных решений решение, соответствующее базису Б (x1, x3) — отрицательное x1 Пример . Решить задачу ЛП.

Эти ограничения могут рассматриваться как произошедшие из неравенств, а переменные x3, x5, x4 — как дополнительные.
Запишем ограничения, выбрав базис из переменных Б< x3, , x4, x5>:

Решение систем уравнений симплекс методом

Этому базису соответствует базисное неотрицательное решение
x1 = 0, x2 = 0, x3 = 2, x4 = 2, x5 = 5 или (0, 0, 2, 2, 5).
Теперь нужно выразить F через небазисные переменные, в нашем случае это уже сделано: F= x2x1.
Проверим, достигла ли функция F своего минимального значения. Для этого базисного решения F= 0 — 0 = 0 — значение функции равно 0. Но его можно уменьшить, если x1 будет возрастать, т. к. коэффициент в функции при x1 отрицателен. Однако при увеличении x1 значения переменных x4, x5 уменьшаются (смотрите второе и третье равенство системы ограничений). Переменная x1 не может быть увеличена больше чем до 2, иначе x4 станет отрицательной (ввиду равенства 2), и не больше, чем до 5, иначе x5 — отрицателен. Итак, из анализа равенств следует, что переменную x1 можно увеличить до 2, при этом значение функции уменьшится.
Перейдем к новому базису Б2, введя переменную x1 в базис вместо x4.
Б2<x1, x3, x5>.
Выразим эти базисные переменные через небазисные. Для этого сначала выразим x1 из второго уравнения и подставим в остальные, в том числе и в функцию.

Имеем:
Решение систем уравнений симплекс методом
F = -2 — x2 + x4.
Базисное решение, соответствующее базису Б2<x1, x3, x5>, имеет вид (2, 0, 6, 0, 3), и функция принимает значение F= -2 в этом базисе.
Значение функции можно и дальше уменьшать, увеличивая x2. Однако, глядя на систему, x2 можно увеличивать лишь до 1, т. к. иначе из последнего равенства x5 = 3 — 3x2 + x4 следует, что при x2 > 1 x5 станет отрицательной. А у нас все переменные в ЗЛП предполагаются неотрицательными. Остальные уравнения системы не дают ограничений на x2. Поэтому увеличим x2 до 1, введя его в базис вместо x5: Б3<x1, x2, x3>.
Выразим x2 через x5 и подставим во все уравнения:
Решение систем уравнений симплекс методом
Решение систем уравнений симплекс методом
Решение систем уравнений симплекс методом
Решение систем уравнений симплекс методом

Базисное решение, соответствующее базису Б3<х1, х2, х3>, выписывается (4, 1, 9, 0, 0), и функция принимает значение F= -3. Заметим, что значение F уменьшилось, т. е. улучшилось по сравнению с предыдущим базисом.
Посмотрев на вид целевой функции Решение систем уравнений симплекс методом, заметим, что улучшить, т. е. уменьшить значение F нельзя и только при x4 = 0, x5 = 0 значение F= -3. как только x4, x5 станут положительными, значение F только увеличится, т. к. коэффициенты при x4, x5 положительны. Значит, функция F достигла своего оптимального значения F* = -3. Итак, наименьшее значение F, равное -3, достигается при x1* = 4, x2* = 1, x3* = 9, x4* = 0, x5* = 0.

На этом примере очень наглядно продемонстрирована идея метода: постепенно переходя от базиса к базису, при этом всегда обращая внимание на значения целевой функции, которые должны улучшиться, мы приходим к такому базису, в котором значение целевой функции улучшить нельзя, оно оптимально. Заметим, что базисов конечное число, поэтому количество шагов, совершаемых нами до того нужного базиса, конечно.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Калькулятор симплекс-метода

Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Как пользоваться калькулятором

  • Задайте количество переменных и ограничений
  • Введите коэффициенты целевой функции
  • Введите коэффициенты ограничений и выберите условия (≤, = или ≥)
  • Выберите тип решения
  • Нажмите кнопку «Решить»

Видео:Алгебра 7. Урок 8 - Системы линейных уравненийСкачать

Алгебра 7. Урок 8 - Системы линейных уравнений

Что умеет калькулятор симплекс-метода

  • Решает основную задачу линейного программирования
  • Позволяет получить решение с помощью основного симплекс-метода и метода искусственного базиса
  • Работает с произвольным количеством переменных и ограничений

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Что такое симплекс-метод

Задача линейного программирования — это задача поиска неотрицательных значений параметров, на которых заданная линейная функция достигает своего максимума или минимума при заданных линейных ограничениях.

Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве. Алгоритм является универсальным методом, которым можно решить любую задачу линейного программирования.

Если вам тоже ничего не понятно из этого определения, то вы на верном пути. Чаще всего статьи про симплекс-метод очень сильно углубляются в дебри теории задачи линейного программирования, из-за чего очень легко потерять суть и так ничего и не понять. Мы постараемся описать алгоритм симплекс-метода так, чтобы показать, что в нём нет ничего страшного и на самом деле он весьма простой. Но сначала нам всё-таки потребуется ввести несколько определений.

Целевая функция — функция, максимум (или минимум) которой нужно найти. Представляет собой сумму произведений коэффициентов на значения переменных: F = c1·x1 + c2·x2 + . + cn·xn

Ограничение — условие вида a1·x1 + a2·x2 + . + an·xn v b , где вместо v ставится один из знаков: ≤, = или ≥

План — произвольный набор значений переменных x1 . xn.

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Алгоритм решения основной задачи ЛП симплекс-методом

Пусть в задаче есть m ограничений, а целевая функция заивисит от n основных переменных. Первым делом необходимо привести все ограничения к каноническому виду — виду, в котором все условия задаются равенствами. Для этого предварительно все неравенства с ≥ умножаются на -1, для получения неравенств с ≤.

Чтобы привести ограничения с неравенствами к каноническому виду, для каждого ограничения вводят переменную, называемую дополнительной с коэффициентом 1. В ответе эти переменные учитываться не будут, однако сильно упростят начальные вычисления. При этом дополнительные переменные являются базисными, а потому могут быть использованы для формирования начального опорного решения.

Формирование начального базиса

После того как задача приведена к каноническому виду, необходимо найти начальный базис для формирования первого опорного решения. Если в процессе приведения были добавлены дополнительные переменные, то они становятся базисными.

Иначе необходимо выделить среди коэффициентов ограничений столбец, который участвует в формировании единичной матрицы в заданной строке (например, если требуется определить вторую базисную переменную, то необходимо искать столбец, в котором второе число равно 1, а остальные равны нулю). Если такой столбец найден, то переменная, соответствующая этому столбцу, становится базисной.

В противном случае можно поискать столбец, в котором все значения кроме числа в заданной строке равны нулю, и, если он будет найден, то разделить все значения строки на число, стоящее на пересечении этих строки и столбца, тем самым образовав столбец, участвующий в формировании единичной матрицы.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x6
Столбец 4 является частью единичной матрицы. Переменная x4 входит в начальный базис
В пятом столбце все значения кроме третьего равны нулю. Поэтому в качестве третьей базисной переменной берём x5 , предварительно разделив третью строку на 2.
Симплекс-таблица

базисx1x2x3x4x5x6b
x61-220016
x412110024
?21-402030

После преобразования получаем следующую таблицу:

базисx1x2x3x4x5x6b
x61-220016
x412110024
x51-201015

Если такой столбец отсутствует, то для формирования базиса необходимо применить исключение Гаусса для первого ненулевого столбца, который ещё не является базисным. Для этого вся строка делится на элемент в найденном столбце, а из остальных строк вычитается полученная строка, разделённая на значение, стоящее в этом же столбце. После этой операции все значения вне данной строки будут обнулены, и столбец можно будет считать базисным.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x5

Начальная симплекс-таблица

базисx1x2x3x4x5b
x423610240
?42400160
x546801200

Для определения второй базисной переменной ищем первый ненулевой столбец, который ещё не является базисным. Первый столбец не нулевой и не является базисным. Выполняем исключение Гаусса: делим строку 2 на 4, а из первой и третьей строк вычитаем вторую, умноженную на соответствующий элемент в первом столбце.

базисx1x2x3x4x5b
x423610240
x142400160
x546801200

После исключения получаем следующую таблицу:

базисx1x2x3x4x5b
x402410160
x1110040
x50440140

После того как базис сформирован, нужно построить начальную симплекс-таблицу. Она строится следующим образом:

  • Для удобства в первой строке можно записать коэффициенты Ci целевой функции (для дополнительных переменных эти коэффициенты равны нулю)
  • Вторая строка формирует шапку таблицы. В ней первый столбец называется базис, а остальные перечисляют основные переменные x1..xn и дополнительные xn+1..xn+k
  • Затем построчно перечисляются базисные переменные и коэффициенты ограничений

Схематично начальная таблица будет выглядеть примерно так:

Cс1c2.cn00.00
базисx1x2.xnxn+1xn+2.xn+kb
xe1a11a12.a1na1n+1a1n+2.a1n+kb1
xe2a21a22.a2na2n+1a2n+2.a2n+kb2
..........
xemam1am2.amnamn+1amn+2.amn+kbm

Избавляемся от отрицательных свободных коэффициентов

После приведения к каноническому виду или после алгебраических преобразований при формировании базиса некоторые из свободных коэффициентов (bi) могли стать отрицательными, что не позволяет перейти к дальнейшим вычислениям. Чтобы избавиться от отрицательных значений b необходимо:

  • Найти строку, в которой находится максимальное по модулю значение b. Пусть это будет строка i;
  • Найти максимальный по модулю элемент в этой строке. Пусть он находится в столбце j;
  • Строку i разделить на элемент, стоящий на пересечении i-ой строки и j-го столбца;
  • Из каждой оставшейся строки k вычесть строку i, умноженную на элемент строки k и столбца j;
  • Переменную, соответствующую найденному столбцу j, сделать базисной (добавить в базис вместо переменной, находящейся в строке i).

Этот шаг необходимо повторять до тех пор, пока все отрицательные b не станут положительными или в строке не останется отрицательных элементов. Если строка с максимальным по модулю bi не содержит отрицательных элементов, то такая задача не имеет решений и на этом алгоритм заканчивает свою работу. В противном случае все bi положительны и алгоритм переходит к следующему этапу — расчёту дельт.

Для каждого ограничения с неравенством добавляем дополнительные переменные x4..x6.
Перепишем ограничения в каноническом виде:
— 4·x1 — 3·x2 — 2·x3 + x4 = -33
— 3·x1 — 2·x2 — x3 + x5 = -23
— x1 — x2 — 2·x3 + x6 = -12

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство, базисной будет добавленная дополнительная переменная x5
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x6

📽️ Видео

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Урок 3. Решение задачи симплекс-методом. Для тех, кто не разобрался с алгоритмом симплекс-метода.Скачать

Урок 3. Решение задачи  симплекс-методом. Для тех, кто не разобрался с алгоритмом симплекс-метода.

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Математика это не ИсламСкачать

Математика это не Ислам

Решение задачи линейного программирования при помощи надстройки Поиск решенияСкачать

Решение задачи линейного программирования при помощи надстройки Поиск решения

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения
Поделиться или сохранить к себе: