Решение систем уравнений с модулем и двумя переменными

Решение систем уравнений с модулем и двумя переменными

  • Решение систем уравнений с модулем и двумя переменными

Решение систем уравнений с модулем и двумя переменными

§ 3. Решение систем с параметром и с модулями

В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.

Решите систему уравнений $$ left<beginleft|x-yright|=5,\ 3x+2y=10.endright.$$

Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:

$$left|x-yright|=left<beginx-y,;mathrm;x-ygeq0,\y-x,;mathrm;x-y =0` записывается в виде `x-y=5`, а при `x-y =0`, система имеет вид:

Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.

2 случай. Если `x-y =0`, `y>=0`;

4) `x =0`, `y>=0`, система имеет вид:

Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.

2 случай. `x>=0`, `y =0`.

3 случай. `x =0` система имеет вид:

Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.

4 случай. `x -5/2`, то `|y+5/2|=y+5/2`; если `y то `|y+5/2|=-y-5/2`.

Выражение `y-1=0`, если `y=1`.

Если `y>1`, то `|y-1|=y-1`, а если `y =1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:

Тогда `x=1/3(2*2+5)=3`. Число `2>1`, так что пара `(3;2)` является решением системы.

Пусть теперь `-5/2 хождения `y` получаем уравнение

Число `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Модули в системах уравнений и неравенств с двумя переменными

Подробней о раскрытии модуля в уравнении, см. §40 справочника для 7 класса, а также пример 2 §14 данного справочника.
Подробней о раскрытии модуля в неравенстве, см. §10 данного справочника.

п.1. Примеры

Решение систем уравнений с модулем и двумя переменными

б) ( left< begin mathrm & \ mathrm & endright. )
Проанализируем первый график:
Исходная прямая y = x – 1 превращается в ломаную y = |x – 1|, «отражается» в точке (1; 0) в положительную полуплоскость y > 0.
Далее, ломаная y = |x – 1| опускается на 1 вниз y = |x – 1| – 1.
Наконец, области y = |x – 1| – 1 с отрицательными Y снова отражаются в положительную полуплоскость y > 0.
Второй график – окружность с центром (1; 0), радиусом 1.

Решение систем уравнений с модулем и двумя переменными

Решение систем уравнений с модулем и двумя переменными

Решение – точка A(1; 3) и треугольник BCD, заданный системой трех неравенств:
( left< begin mathrm & \ mathrm & \ mathrm & endright. )

Решение систем уравнений с модулем и двумя переменными

Пример 3. Найдите значения параметра a, при которых система имеет ровно два решения:
( left< begin mathrm & \ mathrm & endright. )
y = x 2 – 5|x| + 4 – парабола y = x 2 – 5x + 4 = (x – 1)(x – 4), x > 0, отраженная в отрицательную полуплоскость x 0 является прямая ( mathrm<x_0=frac=frac=2,5> )
Вершина лежит на оси. Ордината вершины: y0 = 2,5 2 – 5 · 2,5 + 4 = –2,25.
В полуплоскости x –2,25 решений бесконечное множество (отрезки кривой).
Ответ: a = –2,25.

Видео:Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Системы линейных уравнений

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Линейные уравнения с двумя переменными

У школьника имеется 200 рублей, чтобы пообедать в школе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе можно накупить на 200 рублей?

Обозначим количество пирожных через x , а количество чашек кофе через y . Тогда стоимость пирожных будет обозначаться через выражение 25x , а стоимость чашек кофе через 10y .

25x — стоимость x пирожных
10y — стоимость y чашек кофе

Итоговая сумма должна равняться 200 рублей. Тогда получится уравнение с двумя переменными x и y

Сколько корней имеет данное уравнение?

Всё зависит от аппетита школьника. Если он купит 6 пирожных и 5 чашек кофе, то корнями уравнения будут числа 6 и 5.

Решение систем уравнений с модулем и двумя переменными

Говорят, что пара значений 6 и 5 являются корнями уравнения 25x + 10y = 200 . Записывается как (6; 5) , при этом первое число является значением переменной x , а второе — значением переменной y .

6 и 5 не единственные корни, которые обращают уравнение 25x + 10y = 200 в тождество. При желании на те же 200 рублей школьник может купить 4 пирожных и 10 чашек кофе:

Решение систем уравнений с модулем и двумя переменными

В этом случае корнями уравнения 25x + 10y = 200 является пара значений (4; 10) .

Более того, школьник может вообще не покупать кофе, а купить пирожные на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 8 и 0

Решение систем уравнений с модулем и двумя переменными

Или наоборот, не покупать пирожные, а купить кофе на все 200 рублей. Тогда корнями уравнения 25x + 10y = 200 будут значения 0 и 20

Решение систем уравнений с модулем и двумя переменными

Попробуем перечислить все возможные корни уравнения 25x + 10y = 200 . Условимся, что значения x и y принадлежат множеству целых чисел. И пусть эти значения будут бóльшими или равными нулю:

Так будет удобно и самому школьнику. Пирожные удобнее покупать целыми, чем к примеру несколько целых пирожных и половину пирожного. Кофе также удобнее брать целыми чашками, чем к примеру несколько целых чашек и половину чашки.

Заметим, что при нечетном x невозможно достичь равенства ни при каком y . Тогда значениями x будут следующие числа 0, 2, 4, 6, 8. А зная x можно без труда определить y

Решение систем уравнений с модулем и двумя переменными

Таким образом, мы получили следующие пары значений (0; 20), (2; 15), (4; 10), (6; 5), (8; 0). Эти пары являются решениями или корнями уравнения 25x + 10y = 200 . Они обращают данное уравнение в тождество.

Уравнение вида ax + by = c называют линейным уравнением с двумя переменными. Решением или корнями этого уравнения называют пару значений ( x; y ), которая обращает его в тождество.

Отметим также, что если линейное уравнение с двумя переменными записано в виде ax + b y = c , то говорят, что оно записано в каноническом (нормальном) виде.

Некоторые линейные уравнения с двумя переменными могут быть приведены к каноническому виду.

Например, уравнение 2(16x + 3y − 4) = 2(12 + 8xy) можно привести к виду ax + by = c . Раскроем скобки в обеих частях этого уравнения, получим 32x + 6y − 8 = 24 + 16x − 2y . Слагаемые, содержащие неизвестные сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой. Тогда получим 32x − 16x + 6y + 2y = 24 + 8 . Приведём подобные слагаемые в обеих частях, получим уравнение 16x + 8y = 32. Это уравнение приведено к виду ax + by = c и является каноническим.

Рассмотренное ранее уравнение 25x + 10y = 200 также является линейным уравнением с двумя переменными в каноническом виде . В этом уравнении параметры a , b и c равны значениям 25, 10 и 200 соответственно.

На самом деле уравнение ax + by = c имеет бесчисленное множество решений. Решая уравнение 25x + 10y = 200, мы искали его корни только на множестве целых чисел. В результате получили несколько пар значений, которые обращали данное уравнение в тождество. Но на множестве рациональных чисел уравнение 25x + 10y = 200 будет иметь бесчисленное множество решений.

Для получения новых пар значений, нужно взять произвольное значение для x , затем выразить y . К примеру, возьмем для переменной x значение 7. Тогда получим уравнение с одной переменной 25 × 7 + 10y = 200 в котором можно выразить y

Решение систем уравнений с модулем и двумя переменными

Пусть x = 15 . Тогда уравнение 25x + 10y = 200 примет вид 25 × 15 + 10y = 200. Отсюда находим, что y = −17,5

Решение систем уравнений с модулем и двумя переменными

Пусть x = −3 . Тогда уравнение 25x + 10y = 200 примет вид 25 × (−3) + 10y = 200. Отсюда находим, что y = −27,5

Решение систем уравнений с модулем и двумя переменными

Видео:Система уравнений с модулями #1Скачать

Система уравнений с модулями #1

Система двух линейных уравнений с двумя переменными

Для уравнения ax + by = c можно сколько угодно раз брать произвольные значение для x и находить значения для y . Отдельно взятое такое уравнение будет иметь бесчисленное множество решений.

Но бывает и так, что переменные x и y связаны не одним, а двумя уравнениями. В этом случае они образуют так называемую систему линейных уравнений с двумя переменными. Такая система уравнений может иметь одну пару значений (или по-другому: «одно решение»).

Может случиться и так, что система вовсе не имеет решений. Бесчисленное множество решений система линейных уравнений может иметь в редких и в исключительных случаях.

Два линейных уравнения образуют систему тогда, когда значения x и y входят в каждое из этих уравнений.

Вернемся к самому первому уравнению 25x + 10y = 200 . Одной из пар значений для этого уравнения была пара (6; 5) . Это случай, когда на 200 рублей можно можно было купить 6 пирожных и 5 чашек кофе.

Составим задачу так, чтобы пара (6; 5) стала единственным решением для уравнения 25x + 10y = 200 . Для этого составим ещё одно уравнение, которое связывало бы те же x пирожных и y чашечек кофе.

Поставим текст задачи следующим образом:

«Школьник купил на 200 рублей несколько пирожных и несколько чашек кофе. Пирожное стоит 25 рублей, а чашка кофе 10 рублей. Сколько пирожных и чашек кофе купил школьник, если известно что количество пирожных на одну единицу больше количества чашек кофе?»

Первое уравнение у нас уже есть. Это уравнение 25x + 10y = 200 . Теперь составим уравнение к условию «количество пирожных на одну единицу больше количества чашек кофе» .

Количество пирожных это x , а количество чашек кофе это y . Можно записать эту фразу с помощью уравнения x − y = 1. Это уравнение будет означать, что разница между пирожными и кофе составляет 1.

Либо второе уравнение можно записать как x = y + 1 . Это уравнение означает, что количество пирожных на единицу больше, чем количество чашек кофе. Поэтому для получения равенства, к количеству чашек кофе прибавлена единица. Это легко можно понять, если воспользоваться моделью весов, которые мы рассматривали при изучении простейших задач:

Решение систем уравнений с модулем и двумя переменными

Получили два уравнения: 25x + 10y = 200 и x = y + 1. Поскольку значения x и y , а именно 6 и 5 входят в каждое из этих уравнений , то вместе они образуют систему. Запишем эту систему. Если уравнения образуют систему, то они обрамляются знаком системы. Знак системы это фигурная скобка:

Решение систем уравнений с модулем и двумя переменными

Давайте решим данную систему. Это позволит увидеть, как мы придём к значениям 6 и 5. Существует много методов решения таких систем. Рассмотрим наиболее популярные из них.

Видео:Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

Метод подстановки

Название этого метода говорит само за себя. Суть его заключается в том, чтобы одно уравнение подставить в другое, предварительно выразив одну из переменных.

В нашей системе ничего выражать не нужно. Во втором уравнении x = y + 1 переменная x уже выражена. Эта переменная равна выражению y + 1 . Тогда можно подставить это выражение в первое уравнение вместо переменной x

Решение систем уравнений с модулем и двумя переменными

После подстановки выражения y + 1 в первое уравнение вместо x , получим уравнение 25(y + 1) + 10y = 200 . Это линейное уравнение с одной переменной. Такое уравнение решить довольно просто:

Решение систем уравнений с модулем и двумя переменными

Мы нашли значение переменной y . Теперь подставим это значение в одно из уравнений и найдём значение x . Для этого удобно использовать второе уравнение x = y + 1 . В него и подставим значение y

Решение систем уравнений с модулем и двумя переменными

Значит пара (6; 5) является решением системы уравнений, как мы и задумывали. Выполняем проверку и убеждаемся, что пара (6; 5) удовлетворяет системе:

Решение систем уравнений с модулем и двумя переменными

Пример 2. Решить методом подстановки следующую систему уравнений:

Решение систем уравнений с модулем и двумя переменными

Подставим первое уравнение x = 2 + y во второе уравнение 3x − 2y = 9 . В первом уравнении переменная x равна выражению 2 + y . Это выражение и подставим во второе уравнение вместо x

Решение систем уравнений с модулем и двумя переменными

Теперь найдём значение x . Для этого подставим значение y в первое уравнение x = 2 + y

Решение систем уравнений с модулем и двумя переменными

Значит решением системы Решение систем уравнений с модулем и двумя переменнымиявляется пара значение (5; 3)

Пример 3. Решить методом подстановки следующую систему уравнений:

Решение систем уравнений с модулем и двумя переменными

Здесь в отличие от предыдущих примеров, одна из переменных не выражена явно.

Чтобы подставить одно уравнение в другое, сначала нужно выразить одну из переменных.

Выражать желательно ту переменную, которая имеет коэффициент единицу. Коэффициент единицу имеет переменная x , которая содержится в первом уравнении x + 2y = 11 . Эту переменную и выразим.

После выражения переменной x , наша система примет следующий вид:

Решение систем уравнений с модулем и двумя переменными

Теперь подставим первое уравнение во второе и найдем значение y

Решение систем уравнений с модулем и двумя переменными

Подставим y в первое уравнение и найдём x

Решение систем уравнений с модулем и двумя переменными

Значит решением системы Решение систем уравнений с модулем и двумя переменнымиявляется пара значений (3; 4)

Конечно, выражать можно и переменную y . Корни от этого не изменятся. Но если выразить y, получится не очень-то и простое уравнение, на решение которого уйдет больше времени. Выглядеть это будет следующим образом:

Решение систем уравнений с модулем и двумя переменными

Видим, что в данном примере выражать x намного удобнее, чем выражать y .

Пример 4. Решить методом подстановки следующую систему уравнений:

Решение систем уравнений с модулем и двумя переменными

Выразим в первом уравнении x . Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Подставим первое уравнение во второе и найдём y

Решение систем уравнений с модулем и двумя переменными

Подставим y в первое уравнение и найдём x . Можно воспользоваться изначальным уравнением 7x + 9y = 8 , либо воспользоваться уравнением Решение систем уравнений с модулем и двумя переменными, в котором выражена переменная x . Этим уравнением и воспользуемся, поскольку это удобно:

Решение систем уравнений с модулем и двумя переменными

Значит решением системы Решение систем уравнений с модулем и двумя переменнымиявляется пара значений (5; −3)

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Метод сложения

Метод сложения заключается в том, чтобы почленно сложить уравнения, входящие в систему. Это сложение приводит к тому, что образуется новое уравнение с одной переменной. А решить такое уравнение довольно просто.

Решим следующую систему уравнений:

Решение систем уравнений с модулем и двумя переменными

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. Получим следующее равенство:

Решение систем уравнений с модулем и двумя переменными

Приведем подобные слагаемые:

Решение систем уравнений с модулем и двумя переменными

В результате получили простейшее уравнение 3x = 27 корень которого равен 9. Зная значение x можно найти значение y . Подставим значение x во второе уравнение x − y = 3 . Получим 9 − y = 3 . Отсюда y = 6 .

Значит решением системы Решение систем уравнений с модулем и двумя переменнымиявляется пара значений (9; 6)

Пример 2. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Сложим левую часть первого уравнения с левой частью второго уравнения. А правую часть первого уравнения с правой частью второго уравнения. В получившемся равенстве приведем подобные слагаемые:

Решение систем уравнений с модулем и двумя переменными

В результате получили простейшее уравнение 5 x = 20, корень которого равен 4. Зная значение x можно найти значение y . Подставим значение x в первое уравнение 2 x + y = 11 . Получим 8 + y = 11 . Отсюда y = 3 .

Значит решением системы Решение систем уравнений с модулем и двумя переменнымиявляется пара значений (4;3)

Процесс сложения подробно не расписывают. Его нужно выполнять в уме. При сложении оба уравнения должны быть приведены к каноническому виду. То есть к виду ax + by = c .

Из рассмотренных примеров видно, что основная цель сложения уравнений это избавление от одной из переменных. Но не всегда удаётся сразу решить систему уравнений методом сложения. Чаще всего систему предварительно приводят к виду, при котором можно сложить уравнения, входящие в эту систему.

Например, систему Решение систем уравнений с модулем и двумя переменнымиможно сразу решить методом сложения. При сложении обоих уравнений, слагаемые y и −y исчезнут, поскольку их сумма равна нулю. В результате образуется простейшее уравнение 11x = 22 , корень которого равен 2. Затем можно будет определить y равный 5.

А систему уравнений Решение систем уравнений с модулем и двумя переменнымиметодом сложения сразу решить нельзя, поскольку это не приведёт к исчезновению одной из переменных. Сложение приведет к тому, что образуется уравнение 8x + y = 28 , имеющее бесчисленное множество решений.

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному. Это правило справедливо и для системы линейных уравнений с двумя переменными. Одно из уравнений (или оба уравнения) можно умножить на какое-нибудь число. В результате получится равносильная система, корни которой будут совпадать с предыдущей.

Вернемся к самой первой системе Решение систем уравнений с модулем и двумя переменными, которая описывала сколько пирожных и чашек кофе купил школьник. Решением этой системы являлась пара значений (6; 5) .

Умножим оба уравнения, входящие в эту систему на какие-нибудь числа. Скажем первое уравнение умножим на 2, а второе на 3

Решение систем уравнений с модулем и двумя переменными

В результате получили систему Решение систем уравнений с модулем и двумя переменными
Решением этой системы по-прежнему является пара значений (6; 5)

Решение систем уравнений с модулем и двумя переменными

Это значит, что уравнения входящие в систему можно привести к виду, пригодному для применения метода сложения.

Вернемся к системе Решение систем уравнений с модулем и двумя переменными, которую мы не смогли решить методом сложения.

Умножим первое уравнение на 6, а второе на −2

Решение систем уравнений с модулем и двумя переменными

Тогда получим следующую систему:

Решение систем уравнений с модулем и двумя переменными

Сложим уравнения, входящие в эту систему. Сложение компонентов 12x и −12x даст в результате 0, сложение 18y и 4y даст 22y , а сложение 108 и −20 даст 88. Тогда получится уравнение 22y = 88 , отсюда y = 4 .

Если первое время тяжело складывать уравнения в уме, то можно записывать как складывается левая часть первого уравнения с левой частью второго уравнения, а правая часть первого уравнения с правой частью второго уравнения:

Решение систем уравнений с модулем и двумя переменными

Зная, что значение переменной y равно 4, можно найти значение x. Подставим y в одно из уравнений, например в первое уравнение 2x + 3y = 18 . Тогда получим уравнение с одной переменной 2x + 12 = 18 . Перенесем 12 в правую часть, изменив знак, получим 2x = 6 , отсюда x = 3 .

Пример 4. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Умножим второе уравнение на −1. Тогда система примет следующий вид:

Решение систем уравнений с модулем и двумя переменными

Сложим оба уравнения. Сложение компонентов x и −x даст в результате 0, сложение 5y и 3y даст 8y , а сложение 7 и 1 даст 8. В результате получится уравнение 8y = 8 , корень которого равен 1. Зная, что значение y равно 1, можно найти значение x .

Подставим y в первое уравнение, получим x + 5 = 7 , отсюда x = 2

Пример 5. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Желательно, чтобы слагаемые содержащие одинаковые переменные, располагались друг под другом. Поэтому во втором уравнении слагаемые 5y и −2x поменяем местами. В результате система примет вид:

Решение систем уравнений с модулем и двумя переменными

Умножим второе уравнение на 3. Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Теперь сложим оба уравнения. В результате сложения получим уравнение 8y = 16 , корень которого равен 2.

Подставим y в первое уравнение, получим 6x − 14 = 40 . Перенесем слагаемое −14 в правую часть, изменив знак, получим 6x = 54 . Отсюда x = 9.

Пример 6. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Избавимся от дробей. Умножим первое уравнение на 36, а второе на 12

Решение систем уравнений с модулем и двумя переменными

В получившейся системе Решение систем уравнений с модулем и двумя переменнымипервое уравнение можно умножить на −5, а второе на 8

Решение систем уравнений с модулем и двумя переменными

Сложим уравнения в получившейся системе. Тогда получим простейшее уравнение −13y = −156 . Отсюда y = 12 . Подставим y в первое уравнение и найдем x

Решение систем уравнений с модулем и двумя переменными

Пример 7. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Приведем оба уравнения к нормальному виду. Здесь удобно применить правило пропорции в обоих уравнениях. Если в первом уравнении правую часть представить как Решение систем уравнений с модулем и двумя переменными, а правую часть второго уравнения как Решение систем уравнений с модулем и двумя переменными, то система примет вид:

Решение систем уравнений с модулем и двумя переменными

У нас получилась пропорция. Перемножим её крайние и средние члены. Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Первое уравнение умножим на −3, а во втором раскроем скобки:

Решение систем уравнений с модулем и двумя переменными

Теперь сложим оба уравнения. В результате сложения этих уравнений, мы получим равенство, в обеих частях которого будет ноль:

Решение систем уравнений с модулем и двумя переменными

Получается, что система Решение систем уравнений с модулем и двумя переменнымиимеет бесчисленное множество решений.

Но мы не можем просто так взять с неба произвольные значения для x и y . Мы можем указать одно из значений, а другое определится в зависимости от значения, указанного нами. Например, пусть x = 2 . Подставим это значение в систему:

Решение систем уравнений с модулем и двумя переменными

В результате решения одного из уравнений, определится значение для y , которое будет удовлетворять обоим уравнениям:

Решение систем уравнений с модулем и двумя переменными

Получившаяся пара значений (2; −2) будет удовлетворять системе:

Решение систем уравнений с модулем и двумя переменными

Найдём еще одну пару значений. Пусть x = 4. Подставим это значение в систему:

Решение систем уравнений с модулем и двумя переменными

На глаз можно определить, что значение y равно нулю. Тогда получим пару значений (4; 0), которая удовлетворяет нашей системе:

Решение систем уравнений с модулем и двумя переменными

Пример 8. Решить следующую систему уравнений методом сложения:

Решение систем уравнений с модулем и двумя переменными

Умножим первое уравнение на 6, а второе на 12

Решение систем уравнений с модулем и двумя переменными

Перепишем то, что осталось:

Решение систем уравнений с модулем и двумя переменными

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Решение систем уравнений с модулем и двумя переменными

Первое уравнение умножим на −1. Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Теперь сложим оба уравнения. В результате сложения образуется уравнение 6b = 48 , корень которого равен 8. Подставим b в первое уравнение и найдём a

Решение систем уравнений с модулем и двумя переменными

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Система линейных уравнений с тремя переменными

В линейное уравнение с тремя переменными входит три переменные с коэффициентами, а также свободный член. В каноническом виде его можно записать следующим образом:

Данное уравнение имеет бесчисленное множество решений. Придавая двум переменным различные значения, можно найти третье значение. Решением в этом случае является тройка значений (x; y; z) которая обращает уравнение в тождество.

Если переменные x, y, z связаны между собой тремя уравнениями, то образуется система трех линейных уравнений с тремя переменными. Для решения такой системы можно применять те же методы, которые применяются к линейным уравнениям с двумя переменными: метод подстановки и метод сложения.

Пример 1. Решить следующую систему уравнений методом подстановки:

Решение систем уравнений с модулем и двумя переменными

Выразим в третьем уравнении x . Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Теперь выполним подстановку. Переменная x равна выражению 3 − 2y − 2z . Подставим это выражение в первое и второе уравнение:

Решение систем уравнений с модулем и двумя переменными

Раскроем скобки в обоих уравнениях и приведём подобные слагаемые:

Решение систем уравнений с модулем и двумя переменными

Мы пришли к системе линейных уравнений с двумя переменными. В данном случае удобно применить метод сложения. В результате переменная y исчезнет, и мы сможем найти значение переменной z

Решение систем уравнений с модулем и двумя переменными

Теперь найдём значение y . Для этого удобно воспользоваться уравнением −y + z = 4. Подставим в него значение z

Решение систем уравнений с модулем и двумя переменными

Теперь найдём значение x . Для этого удобно воспользоваться уравнением x = 3 − 2y − 2z . Подставим в него значения y и z

Решение систем уравнений с модулем и двумя переменными

Таким образом, тройка значений (3; −2; 2) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Решение систем уравнений с модулем и двумя переменными

Пример 2. Решить систему методом сложения

Решение систем уравнений с модулем и двумя переменными

Сложим первое уравнение со вторым, умноженным на −2.

Если второе уравнение умножить на −2, то оно примет вид −6x + 6y − 4z = −4 . Теперь сложим его с первым уравнением:

Решение систем уравнений с модулем и двумя переменными

Видим, что в результате элементарных преобразований, определилось значение переменной x . Оно равно единице.

Вернемся к главной системе. Сложим второе уравнение с третьим, умноженным на −1. Если третье уравнение умножить на −1, то оно примет вид −4x + 5y − 2z = −1 . Теперь сложим его со вторым уравнением:

Решение систем уравнений с модулем и двумя переменными

Получили уравнение x − 2y = −1 . Подставим в него значение x , которое мы находили ранее. Тогда мы сможем определить значение y

Решение систем уравнений с модулем и двумя переменными

Теперь нам известны значения x и y . Это позволяет определить значение z . Воспользуемся одним из уравнений, входящим в систему:

Решение систем уравнений с модулем и двумя переменными

Таким образом, тройка значений (1; 1; 1) является решением нашей системы. Проверкой убеждаемся, что эти значения удовлетворяют системе:

Решение систем уравнений с модулем и двумя переменными

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Задачи на составление систем линейных уравнений

Задача на составление систем уравнений решается путем ввода нескольких переменных. Далее составляются уравнения на основании условий задачи. Из составленных уравнений образуют систему и решают её. Решив систему, необходимо выполнить проверку на то, удовлетворяет ли её решение условиям задачи.

Задача 1. Из города в колхоз выехала машина «Волга». Обратно она возвращалась по другой дороге, которая была на 5 км короче первой. Всего в оба конца машина проехала 35 км. Сколько километров составляет длина каждой дороги?

Решение

Пусть x — длина первой дороги, y — длина второй. Если в оба конца машина проехала 35 км, то первое уравнение можно записать как x + y = 35. Это уравнение описывает сумму длин обеих дорог.

Сказано, что обратно машина возвращалась по дороге которая была короче первой на 5 км. Тогда второе уравнение можно записать как xy = 5. Это уравнение показывает, что разница между длинами дорог составляет 5 км.

Либо второе уравнение можно записать как x = y + 5 . Этим уравнением и воспользуемся.

Поскольку переменные x и y в обоих уравнениях обозначают одно и то же число, то мы можем образовать из них систему:

Решение систем уравнений с модулем и двумя переменными

Решим эту систему каким-нибудь из изученных ранее методов. В данном случае удобно воспользоваться методом подстановки, поскольку во втором уравнении переменная x уже выражена.

Подставим второе уравнение в первое и найдём y

Решение систем уравнений с модулем и двумя переменными

Подставим найденное значение y в во второе уравнение x = y + 5 и найдём x

Решение систем уравнений с модулем и двумя переменными

Длина первой дороги была обозначена через переменную x . Теперь мы нашли её значение. Переменная x равна 20. Значит длина первой дороги составляет 20 км.

А длина второй дороги была обозначена через y . Значение этой переменной равно 15. Значит длина второй дороги составляет 15 км.

Выполним проверку. Для начала убедимся, что система решена правильно:

Решение систем уравнений с модулем и двумя переменными

Теперь проверим удовлетворяет ли решение (20; 15) условиям задачи.

Было сказано, что всего в оба конца машина проехала 35 км. Складываем длины обеих дорог и убеждаемся, что решение (20; 15) удовлетворяет данному условию: 20 км + 15 км = 35 км

Следующее условие: обратно машина возвращалась по другой дороге, которая была на 5 км короче первой . Видим, что решение (20; 15) удовлетворяет и этому условию, поскольку 15 км короче, чем 20 км на 5 км: 20 км − 15 км = 5 км

При составлении системы важно, чтобы переменные обозначали одни и те же числа во всех уравнениях, входящих в эту систему.

Так наша система Решение систем уравнений с модулем и двумя переменнымисодержит два уравнения. Эти уравнения в свою очередь содержат переменные x и y , которые обозначают одни и те же числа в обоих уравнениях, а именно длины дорог, равных 20 км и 15 км.

Задача 2. На платформу были погружены дубовые и сосновые шпалы, всего 300 шпал. Известно, что все дубовые шпалы весили на 1 т меньше, чем все сосновые. Определить, сколько было дубовых и сосновых шпал отдельно, если каждая дубовая шпала весила 46 кг, а каждая сосновая 28 кг.

Решение

Пусть x дубовых и y сосновых шпал было погружено на платформу. Если всего шпал было 300, то первое уравнение можно записать как x + y = 300 .

Все дубовые шпалы весили 46x кг, а сосновые весили 28y кг. Поскольку дубовые шпалы весили на 1 т меньше, чем сосновые, то второе уравнение можно записать, как 28y − 46x = 1000 . Это уравнение показывает, что разница масс между дубовыми и сосновыми шпалами, составляет 1000 кг.

В результате получаем два уравнения, которые образуют систему

Решение систем уравнений с модулем и двумя переменными

Решим данную систему. Выразим в первом уравнении x . Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Подставим первое уравнение во второе и найдём y

Решение систем уравнений с модулем и двумя переменными

Подставим y в уравнение x = 300 − y и узнаем чему равно x

Решение систем уравнений с модулем и двумя переменными

Значит на платформу было погружено 100 дубовых и 200 сосновых шпал.

Проверим удовлетворяет ли решение (100; 200) условиям задачи. Для начала убедимся, что система решена правильно:

Решение систем уравнений с модулем и двумя переменными

Было сказано, что всего было 300 шпал. Складываем количество дубовых и сосновых шпал и убеждаемся, что решение (100; 200) удовлетворяет данному условию: 100 + 200 = 300.

Следующее условие: все дубовые шпалы весили на 1 т меньше, чем все сосновые . Видим, что решение (100; 200) удовлетворяет и этому условию, поскольку 46 × 100 кг дубовых шпал легче, чем 28 × 200 кг сосновых шпал: 5600 кг − 4600 кг = 1000 кг.

Задача 3. Взяли три куска сплава меди с никелем в отношениях 2 : 1 , 3 : 1 и 5 : 1 по массе. Из них сплавлен кусок массой 12 кг с отношением содержания меди и никеля 4 : 1 . Найдите массу каждого исходного куска, если масса первого из них вдвое больше массы второго.

Решение

Пусть x — масса первого куска, y — масса второго куска, z — масса третьего куска. Если из этих кусков сплавлен кусок массой 12 кг, то первое уравнение можно записать как x + y + z = 12 .

Масса первого куска вдвое больше массы второго куска. Тогда второе уравнение можно записать как x = 2y .

Полученных двух уравнений недостаточно для решения данной задачи. Если второе уравнение подставить в первое, то мы получим уравнение 2y + y + z = 12 , откуда 3y + z = 12 . Это уравнение имеет бесчисленное множество решений.

Составим ещё одно уравнение. Пусть это уравнение будет описывать количество меди, взятого с каждого сплава и сколько меди оказалось в получившемся сплаве.

Если первый сплав имеет массу x , а медь и никель находится нём в отношении 2 : 1 , то можно записать, что в новом сплаве содержится Решение систем уравнений с модулем и двумя переменнымимеди от первого куска.

Если второй сплав имеет массу y , а медь и никель находится в нём в отношении 3 : 1 , то можно записать, что в новом сплаве содержится Решение систем уравнений с модулем и двумя переменнымимеди от второго куска.

Если третий сплав имеет массу z , а медь и никель находится в отношении 5 : 1 , то можно записать, что в новом сплаве содержится Решение систем уравнений с модулем и двумя переменнымимеди от третьего куска.

Полученный сплав имеет имеет массу 12 кг, а медь и никель находится в нём в отношении 4 : 1 . Тогда можно записать, что в полученном сплаве содержится Решение систем уравнений с модулем и двумя переменнымимеди.

Сложим Решение систем уравнений с модулем и двумя переменными, Решение систем уравнений с модулем и двумя переменными, Решение систем уравнений с модулем и двумя переменнымии приравняем эту сумму к 9,6. Это и будет нашим третьим уравнением:

Решение систем уравнений с модулем и двумя переменными

Попробуем решить данную систему.

Для начала упростим третье уравнение. Подставим в него второе уравнение и посмотрим, что из этого выйдет:

Решение систем уравнений с модулем и двумя переменными

Теперь в главной системе вместо уравнения Решение систем уравнений с модулем и двумя переменнымизапишем уравнение, которое мы сейчас получили, а именно уравнение 25y + 10z = 115,2

Решение систем уравнений с модулем и двумя переменными

Подставим второе уравнение в первое:

Решение систем уравнений с модулем и двумя переменными

Умножим первое уравнение на −10 . Тогда система примет вид:

Решение систем уравнений с модулем и двумя переменными

Сложим оба уравнения. Тогда получим простейшее уравнение −5y = −4,8 откуда найдём y равный 0,96 . Значит масса второго сплава составляет 0,96 кг .

Теперь найдём x . Для этого удобно воспользоваться уравнением x = 2y. Значение y уже известно. Осталось только подставить его:

Решение систем уравнений с модулем и двумя переменными

Значит масса первого сплава составляет 1,92 кг .

Теперь найдём z . Для этого удобно воспользоваться уравнением x + y + z = 12 . Значения x и y уже известны. Подставим их куда нужно:

Решение систем уравнений с модулем и двумя переменными

Значит масса третьего сплава составляет 9,12 кг.

🔥 Видео

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Уравнение с двумя модулями: особенности решенияСкачать

Уравнение с двумя модулями: особенности решения

Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Уравнение с модулемСкачать

Уравнение с модулем

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Система уравнений с модулями #2Скачать

Система уравнений с модулями #2

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Система уравнений с модулем. ЕГЭ математикаСкачать

Система уравнений с модулем. ЕГЭ математика

Системы неравенств с двумя переменными. Алгебра, 9 классСкачать

Системы неравенств с двумя переменными. Алгебра, 9 класс

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ
Поделиться или сохранить к себе: