Решение систем нелинейных уравнений методом матриц

Методы решения систем нелинейных уравнений

КУРСОВАЯ РАБОТА

по дисциплине “Математические задачи электроэнергетики”

для студентов заочной формы обучения по специальности “Электрические станции”

РАЗДЕЛ 1. Матричная алгебра и теория графов в электроэнергетике

Расчет и анализ функционирования и развития сложных систем энергетики удобнее вести с применением алгебры матриц и теории графов. Для этого схемы замещения электрической системы (в частности электрической сети) представляется в виде графа, а математические выражения, описывающие режим работы и развитие системы, записываются в матричной форме.

Предполагается, что студенты, уже знакомились с матричной алгеброй в курсе «Математика». Необходимо вспомнить основные положения матричной алгебры из [2, с.225 – 237 и 3, с.273 – 279].

Полезно познакомиться с элементами теории графов применительно к электрическим системам, рассмотреть матричное представление схем электрических цепей, изучить примеры формирования матричных уравнений, состояние электрической системы для установившихся режимов нормальной работы [1, с. 31 – 69, и 3, с.280 – 294].

Матричная алгебра

1. Дайте определение матрицы.

2. Какую матрицу называют прямоугольной, квадратной, вектор-строкой, вектор-столбцом, симметричной, неособенной, диагональной, единичной, нулевой, транспонированной?

3. Какие алгебраические операции имеют место в матричной алгебре и как они выполняются?

4. Что такое определитель матрицы, миноры и алгебраические дополнения?

5. Расскажите способ вычисления определителя матрицы разложением по элементам строки или столбца.

6. Дайте определение обратной матрицы.

7. Расскажите алгоритм вычисления обратной матрицы классическим способом.

Теория графов в электроэнергетике

8. Дайте понятие о графе электрической сети. Независимые узлы и контуры.

9. Расскажите правила формирования первой и второй матриц инциденции графа сети.

10. Напишите законы Ома и Кирхгофа в матричной форме.

11. Напишите уравнение состояния электрической сети в матричной форме для методов узловых напряжений и контурных токов.

12. Расскажите правила формирования матриц узловых проводимостей и контурных сопротивлений.

13. Матричный расчет токов в ветвях линейной электрической цепи методом узловых напряжений и контурных токов.

РАЗДЕЛ 2. СИСТЕМЫ УРАВНЕНИЙ И МЕТОДЫ ИХ РЕШЕНИЯ ПРИМЕНИТЕЛЬНО К ЗАДАЧАМ ЭЛЕКТРОЭНЕРГЕТИКИ

Методы решения систем линейных уравнений

Решение многих задач электроэнергетики сводится к формированию систем уравнений и нахождению их корней. Методы решения систем линейных уравнений(СЛУ) разделяются на точные и итерационные.

Точные методы представляют собой конечные алгоритмы для вычисления корней уравнений. Это методы обратной матрицы, определителей, Гаусса и др. Итерационные методы позволяют получать корни системы с заданной точностью путем сходящихся бесконечных процессов. К их числу относятся методы простой итерации, Зейделя и др. Эффективность применения итерационных методов существенно зависит от удачного выбора начального приближения к корням и быстроты сходимости процесса.

Каждый метод имеет свои преимущества и недостатки по сравнению с другими методами. Значение методов позволяет выбирать лучший из них для решения СЛУ в конкретной задаче электроэнергетики.

Особое внимание следует обратить на метод Гаусса, получивший наибольшее распространение для решения СЛУ. Необходимо рассмотреть его недостатки и способы их устранения.

1. Сущность точных и итерационных методов решения СЛУ.

2. Метод обратной матрицы.

3. Метод определителей.

5. Вычисление определителя методом Гаусса.

6. Метод Гаусса без обратного хода.

7. Вычисление определителя методом Гаусса.

8. Преимущества и недостатки метода Гаусса.

9. Метод простой итерации.

10. Метод Зейделя.

11. Основное условие сходимости итерационного процесса решения СЛУ.

12. Преимущества и недостатки итерационных методов решения СЛУ.

Методы решения систем нелинейных уравнений

Установившиеся режимы электрических систем описываются с большой степенью точности нелинейными уравнениями. Системы нелинейных уравнений (СНУ) решаются только итерационными методами. При изменении напряжений узлов в небольших диапазонах система уравнений установившегося режима носит название слабо нелинейной и для нахождения её корней могут быть применены метод Зейделя и метод простой итерации. В случае, когда нелинейность уравнений высока, применяется более эффективный метод Ньютона, который получил наибольшее применение в электроэнергетике. Необходимо хорошо понять сущность этого метода, основанного на последовательном решении линеаризованных систем уравнений. Предлагается рассмотреть геометрическую интерпретацию метода Ньютона на примере решения одного нелинейного уравнения, изучить алгоритм решения СНУ этим методом.

1. Понятие о нелинейных уравнениях, описывающих режимы электрических систем.

2. Методы простой итерации и Зейделя для решения нелинейных уравнений.

3. Сущность линеаризации нелинейных уравнений.

4. Метод Ньютона как метод касательных для решения нелинейного уравнения.

5. Алгоритм метода Ньютона для решения СНУ.

ЗАДАЧИ

В условии задач указывается литература, которую рекомендуется использовать для изучения методов их решения.

Задача 1. Вычислить определитель квадратной матрицы третьего порядка (табл.1) двумя способами: классическим и разложением по элементам строки или столбца [2].

Задача 2. Обратить классическим способом квадратную матрицу третьего порядка (табл.1) [2].

Задача 3.Для графа сети (табл.2) составить матрицы, входящие в уравнения законов Ома и Кирхгофа [1,3].

Задача 4. Для графа сети (табл.2) составить матрицы, входящие в выражения:

Решение систем нелинейных уравнений методом матриц(1)

Решение систем нелинейных уравнений методом матриц(2)

для определения токов в ветвях методом узловых напряжений [1,3].

Задача 6. Решить СЛУ третьего порядка (табл.4) методом обратной матрицы [2].

Задача 7. Решить СЛУ третьего порядка (табл.4) методом Гаусса. Вычисления выполнять в матричной форме [2].

Задача 8. Решить СЛУ второго порядка (табл.5) методом простой итерации [2]. Принять начальные приближения Решение систем нелинейных уравнений методом матриц, Решение систем нелинейных уравнений методом матрици точность вычисления корней Решение систем нелинейных уравнений методом матриц.

Задача 9. Решить СЛУ второго порядка (табл.5) методом Зейделя [2]. Принять начальные приближения Решение систем нелинейных уравнений методом матриц, Решение систем нелинейных уравнений методом матрици точность вычисления корней Решение систем нелинейных уравнений методом матриц. Сравнить число итераций по методу простой итерации и методу Зейделя.

Задача 10. Решить СНУ второго порядка (табл.6) методом Ньютона. [2]. Принять Решение систем нелинейных уравнений методом матриц, Решение систем нелинейных уравнений методом матрици Решение систем нелинейных уравнений методом матриц.

Список литературы

1 Электрические системы. Математические задачи электроэнергетики/Под ред. В.А. Веникова. Т.1 – М.: Высшая школа, 1981. – 334

2. Демидович Б.П., Марон И.А. Основы вычислительной математики. – М.: Наука, 1970. – 664 с.

3. Блок В.М. Электрические сети и системы: Учебное пособие для ВУЗов. – М.: Высшая школа 1986. – 430 с.

4. Электроэнергетические системы в примерах и иллюстрациях: Учебное пособие для ВУЗов/ Под ред. В.А. Веникова. – М.: Энергоатомиздат, 1983. – 504 с.

5. Идельчик В.И. Расчеты и оптимизация установившихся режимов электрических сетей и систем. – М.: Энергоатомиздат, 1988.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Численные методы решения систем нелинейных уравнений

Введение

Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.

Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме Решение систем нелинейных уравнений методом матриц, возвести их в квадрат и сложить.

Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:

Решение систем нелинейных уравнений методом матриц(1)

Обозначим через Решение систем нелинейных уравнений методом матрицвектор неизвестных и определим вектор-функцию Решение систем нелинейных уравнений методом матрицТогда система (1) записывается в виде уравнения:

Решение систем нелинейных уравнений методом матриц(2)

Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].

Решение систем нелинейных уравнений методом матриц

Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.

С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.

Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.

Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.

Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений

Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.

scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней

method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.

Методы решения систем нелинейных уравнений

Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.

В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:

Решение систем нелинейных уравнений методом матриц(3)

Определим матрицу Якоби:

Решение систем нелинейных уравнений методом матриц(4)

Запишем(3) в виде:

Решение систем нелинейных уравнений методом матриц(5)

Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:

Решение систем нелинейных уравнений методом матриц(6)

где Решение систем нелинейных уравнений методом матриц— итерационные параметры, a Решение систем нелинейных уравнений методом матриц— квадратная матрица n х n, имеющая обратную.

При использовании записи (6) метод Ньютона (5) соответствует выбору:

Решение систем нелинейных уравнений методом матриц

Система линейных уравнений (5) для нахождения нового приближения Решение систем нелинейных уравнений методом матрицможет решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя

При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:

Решение систем нелинейных уравнений методом матриц(7)

В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.

Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:

Решение систем нелинейных уравнений методом матриц(8)

Выбор модельной функции

Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:

Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней

Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:

Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.

Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона

Решение для n=100:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds

Решение для n=200:

Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds

Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:

Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds

Вывод: Программа работает и при изменении модельной функции.

Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500

Видео:Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Нелинейные системы и уравнения

В более общем случае мы имеем не одно уравнение (1), а систему нелинейных уравнений $$ begin tag f_i(x_1, x_2, ldots, x_n) = 0, quad i = 1, 2, ldots n. end $$ Обозначим через ( mathbf = (x_1, x_2, ldots, x_n) ) вектор неизвестных и определим вектор-функцию ( mathbf(mathbf) = (f_1(mathbf), f_2(mathbf), ldots, f_n(mathbf)) ). Тогда система (2) записывается в виде $$ begin tag mathbf(mathbf) = 0. end $$ Частным случаем (3) является уравнение (1) (( n = 1 )). Второй пример (3) — система линейных алгебраических уравнений, когда ( mathbf (mathbf) = A mathbf — mathbf ).

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Метод Ньютона

Видео:Решение систем линейных уравнений с помощью матрицСкачать

Решение систем линейных уравнений с помощью матриц

Решение нелинейных уравнений

При итерационном решении уравнений (1), (3) задается некоторое начальное приближение, достаточно близкое к искомому решению ( x^* ). В одношаговых итерационных методах новое приближение ( x_ ) определяется по предыдущему приближению ( x_k ). Говорят, что итерационный метод сходится с линейной скоростью, если ( x_ — x^* = O(x_k — x^*) ) и итерационный метод имеет квадратичную сходимость, если ( x_ — x^* = O(x_k — x^*)^2 ).

В итерационном методе Ньютона (методе касательных) для нового приближения имеем $$ begin tag x_ = x_k + frac, quad k = 0, 1, ldots, end $$

Вычисления по (4) проводятся до тех пор, пока ( f(x_k) ) не станет близким к нулю. Более точно, до тех пор, пока ( |f_(x_k)| > varepsilon ), где ( varepsilon ) — малая величина.

Простейшая реализация метода Ньютона может выглядеть следующим образом:

Чтобы найти корень уравнения ( x^2 = 9 ) необходимо реализовать функции

Данная функция хорошо работает для приведенного примера. Однако, в общем случае могут возникать некоторые ошибки, которые нужно отлавливать. Например: пусть нужно решить уравнение ( tanh(x) = 0 ), точное решение которого ( x = 0 ). Если ( |x_0| leq 1.08 ), то метод сходится за шесть итераций.

Теперь зададим ( x_0 ) близким к ( 1.09 ). Возникнет переполнение

Возникнет деление на ноль, так как для ( x_7 = -126055892892.66042 ) значение ( tanh(x_7) ) при машинном округлении равно ( 1.0 ) и поэтому ( f^prime(x_7) = 1 — tanh(x_7)^2 ) становится равной нулю в знаменателе.

Проблема заключается в том, что при таком начальном приближении метод Ньютона расходится.

Еще один недостаток функции naive_Newton заключается в том, что функция f(x) вызывается в два раза больше, чем необходимо.

Учитывая выше сказанное реализуем функцию с учетом следующего:

  1. обрабатывать деление на ноль
  2. задавать максимальное число итераций в случае расходимости метода
  3. убрать лишний вызов функции f(x)

Метод Ньютона сходится быстро, если начальное приближение близко к решению. Выбор начального приближение влияет не только на скорость сходимости, но и на сходимость вообще. Т.е. при неправильном выборе начального приближения метод Ньютона может расходиться. Неплохой стратегией в случае, когда начальное приближение далеко от точного решения, может быть использование нескольких итераций по методу бисекций, а затем использовать метод Ньютона.

При реализации метода Ньютона нужно знать аналитическое выражение для производной ( f^prime(x) ). Python содержит пакет SymPy, который можно использовать для создания функции dfdx . Для нашей задачи это можно реализовать следующим образом:

Видео:Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

Решение нелинейных систем

Идея метода Ньютона для приближенного решения системы (2) заключается в следующем: имея некоторое приближение ( pmb^ ), мы находим следующее приближение ( pmb^ ), аппроксимируя ( pmb(pmb^) ) линейным оператором и решая систему линейных алгебраических уравнений. Аппроксимируем нелинейную задачу ( pmb(pmb^) = 0 ) линейной $$ begin tag pmb(pmb^) + pmb(pmb^)(pmb^ — pmb^) = 0, end $$ где ( pmb(pmb^) ) — матрица Якоби (якобиан): $$ pmb(pmb^) = begin frac<partial f_1(pmb^)> & frac<partial f_1(pmb^)> & ldots & frac<partial f_1(pmb^)> \ frac<partial f_2(pmb^)> & frac<partial f_2(pmb^)> & ldots & frac<partial f_2(pmb^)> \ vdots & vdots & ldots & vdots \ frac<partial f_n(pmb^)> & frac<partial f_n(pmb^)> & ldots & frac<partial f_n(pmb^)> \ end $$ Уравнение (5) является линейной системой с матрицей коэффициентов ( pmb ) и вектором правой части ( -pmb(pmb^) ). Систему можно переписать в виде $$ pmb(pmb^)pmb = — pmb(pmb^), $$ где ( pmb = pmb^ — pmb^ ).

Таким образом, ( k )-я итерация метода Ньютона состоит из двух стадий:

1. Решается система линейных уравнений (СЛАУ) ( pmb(pmb^)pmb = -pmb(pmb^) ) относительно ( pmb ).

2. Находится значение вектора на следующей итерации ( pmb^ = pmb^ + pmb ).

Для решения СЛАУ можно использовать приближенные методы. Можно также использовать метод Гаусса. Пакет numpy содержит модуль linalg , основанный на известной библиотеке LAPACK, в которой реализованы методы линейной алгебры. Инструкция x = numpy.linalg.solve(A, b) решает систему ( Ax = b ) методом Гаусса, реализованным в библиотеке LAPACK.

Когда система нелинейных уравнений возникает при решении задач для нелинейных уравнений в частных производных, матрица Якоби часто бывает разреженной. В этом случае целесообразно использовать специальные методы для разреженных матриц или итерационные методы.

Можно также воспользоваться методами, реализованными для систем линейных уравнений.

🌟 Видео

9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать

9. Метод обратной матрицы для решения систем линейных уравнений / матричный метод

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать

2 минуты на формулы Крамера ➜ Решение систем уравнений методом Крамера

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Матричный метод решения систем линейных уравнений (метод обратной матрицы)Скачать

Матричный метод решения систем линейных уравнений (метод обратной матрицы)

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.
Поделиться или сохранить к себе: