Решение систем линейных уравнений с тремя неизвестными 7 класс

Системы линейных уравнений (7 класс)
Содержание
  1. Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
  2. Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
  3. Как решить систему линейных уравнений?
  4. Система линейных уравнений с тремя переменными
  5. Линейное уравнение с тремя переменными и его решение
  6. Решение системы линейных уравнений с тремя переменными методом подстановки
  7. Решение системы линейных уравнений с тремя переменными методом Крамера
  8. Примеры
  9. Системы линейных уравнений
  10. Линейные уравнения (уравнения первой степени) с двумя неизвестными
  11. Системы из двух линейных уравнений с двумя неизвестными
  12. Системы из трех линейных уравнений с тремя неизвестными
  13. 💡 Видео

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо «(x=3); (y=-1)» пишут так: ((3;-1)).

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе — на (3).

    (begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел ((x_0;y_0)).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

    Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на (8), чтобы найти (y).

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции (y=kx+b).

    Постройте графики этих функций. Как? Можете прочитать здесь .

    Решение систем линейных уравнений с тремя неизвестными 7 класс

  1. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Видео:Система с тремя переменнымиСкачать

    Система с тремя переменными

    Система линейных уравнений с тремя переменными

    Линейное уравнение с тремя переменными и его решение

    Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

    Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; frac x-8y-5z = 7$

    Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

    Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

    Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

    О тождествах – см. §3 данного справочника

    Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

    Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение системы линейных уравнений с тремя переменными методом подстановки

    Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

    Например: решить систему

    $$ <left< begin 3x+2y-z = 8 \ x-y+z = -2 \ 2x-3y-5z = 1 end right.> Rightarrow <left< begin 3(y-z-2)+2y-z = 8 \ x = y-z-2 \ 2(y-z-2)-3y-5z = 1 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = y-z-2 \ 5y-4z = 14 \ -y-7z = 5 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ 5(-7z-5)-4z = 14 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ -39z = 39 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = 2-(-1)-2 = 1 \ y = -7cdot(-1)-5 = 2 \ z = -1 end right.> Rightarrow <left< begin x = 1 \ y = 2 \ z = -1 end right.> $$

    Решение системы линейных уравнений с тремя переменными методом Крамера

    Для системы с 3-мя переменными действуем по аналогии.

    Дана система 3-х линейных уравнений с 3-мя переменными:

    $$ <left< begin a_1 x+b_1 y+c_1 z = d_1 \ a_2 x+b_2 y+c_2 z = d_2 \ a_3 x+b_3 y+c_3 z = d_3 end right.> $$

    Определим главный определитель системы:

    $$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end $$

    и вспомогательные определители :

    $$ Delta_x = begin d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 end, Delta_y = begin a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 end, Delta_z = begin a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 end $$

    Тогда решение системы:

    Соотношение значений определителей, расположения плоскостей и количества решений:

    Три плоскости пересекаются в одной точке

    Три плоскости параллельны

    Две или три плоскости совпадают или пересекаются по прямой

    Бесконечное множество решений

    Осталось определить правило вычисления определителя 3-го порядка.

    Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

    $$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end = a_1 = begin b_2 & c_2 \ b_3 & c_3 end — b_1 = begin a_2 & c_2 \ a_3 & c_3 end + c_1 = begin a_2 & b_2 \ a_3 & b_3 end = $$

    $$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

    Примеры

    Пример 1. Найдите решение системы уравнений методом подстановки:

    $$<left< begin z = 3x+2y-13 \ 2x-y+3(3x+2y-13) = -2 \ x+2y-(3x+2y-13) = 9 end right.> Rightarrow <left< begin z = 3x+2y-13 \ 11x+5y = 37 \ -2x = -4 end right.> Rightarrow $$

    $$Rightarrow <left< begin z = 3cdot2+2cdot3-13 = -1 \ y = frac = 3 \ x = 2 end right.> Rightarrow <left< begin x = 2 \ y = 3 \ z = -1 end right.> $$

    $$ <left< begin x = -y-3z+6 \ 2(-y-3z+6)-5y-z = 5\ (-y-3z+6)+2y-5z = -11 end right.> Rightarrow <left< begin x = -y-3z+6 \ -7y-7z = -7 |:(-7) \ y-8z = -17 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = -y-3z+6 \ y+z = 1 \ y-8z = -17 end right.> Rightarrow <left< begin x = -y-3z+6 \ 9z = 18 \ y = 1-z end right.> Rightarrow <left< begin x = 1-6+6 = 1 \ z = 2 \ y = 1-2 = -1 end right.> Rightarrow$$

    Пример 2. Найдите решение системы уравнений методом Крамера:

    $$ Delta = begin 3 & 2 & -1 \ 2 & -1 & 3\ 1 & 2 & -1 end = 3 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -1 \ 1 & 2 \ end = $$

    $$ Delta_x = begin 13 & 2 & -1 \ -2 & -1 & 3 \ 9 & 2 & -1 \ end = 13 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin -2 & 3 \ 9 & -1 \ end — 1 = begin -2 & -1 \ 9 & 2 \ end = $$

    $$ Delta_y = begin 3 & 13 & -1 \ 2 & -2 & 3 \ 1 & 9 & -1 \ end = 3 = begin -2 & 3 \ 9 & -1 \ end — 13 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -2 \ 1 & 9 \ end = $$

    $$ Delta_z = begin 3 & 2 & 13 \ 2 & -1 & -2 \ 1 & 2 & 9 \ end = 3 = begin -1 & -2 \ 2 & 9 \ end — 2 = begin 2 & -2 \ 1 & 9 \ end + 13 = begin 2 & -1 \ 1 & 2 \ end = $$

    $$ Delta = begin 1 & 1 & 3 \ 2 & -5 & -1\ 1 & 2 & -5 end = 1 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & -5 \ 1 & 2 \ end = $$

    $$ Delta_x = begin 6 & 1 & 3 \ 5 & -5 & -1 \ -11 & 2 & -5 \ end = 6 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 5 & -1 \ -11 & -5 \ end + 3 = begin 5 & -5 \ -11 & 2 \ end = $$

    $$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

    $$ Delta_y = begin 1 & 16 & 3 \ 2 & 5 & -1 \ 1 & -11 & -5 \ end = 1 = begin 5 & -1 \ -11 & -5 \ end — 6 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & 5 \ 1 & -11 \ end = $$

    $$ Delta_z = begin 1 & 1 & 6 \ 2 & -5 & 5 \ 1 & 2 & -11 \ end = 1 = begin -5 & 5 \ 2 & -11 \ end — 1 = begin 2 & 5 \ 1 & -11 \ end + 6 = begin 2 & -5 \ 1 & 2 \ end = $$

    Пример 3*. Решите систему уравнений относительно x,y,и z:

    $$ a neq b, b neq c, a neq c $$

    Решаем методом замены:

    $$ <left< begin z = -(a^3+a^2 x+ay)\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 end right.> Rightarrow <left< beginz = -(a^3+a^2 x+ay)\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \ (c^2-a^2 )x+(c-a)y = a^3-c^3 end right.> $$

    Т.к. $ a neq b$ второе уравнение можно сократить на $(a-b) neq 0$

    Т.к.$ a neq c$ третье уравнение можно сократить на $(a-с) neq 0 $. В третьем уравнении после сокращения поменяем знаки:

    Из второго уравнения получаем:

    Т.к. $b neq c$ можно сократить на $(b-c) neq 0$:

    $$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

    $$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$

    Видео:Система линейных уравнений с тремя переменными | Алгебра 7 класс #49 | ИнфоурокСкачать

    Система линейных уравнений с тремя переменными | Алгебра 7 класс #49 | Инфоурок

    Системы линейных уравнений

    Решение систем линейных уравнений с тремя неизвестными 7 классЛинейные уравнения (уравнения первой степени) с двумя неизвестными
    Решение систем линейных уравнений с тремя неизвестными 7 классСистемы из двух линейных уравнений с двумя неизвестными
    Решение систем линейных уравнений с тремя неизвестными 7 классСистемы из трех линейных уравнений с тремя неизвестными

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Видео:Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    Линейные уравнения (уравнения первой степени) с двумя неизвестными

    Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид

    ax +by = c ,(1)

    где a , b , c – заданные числа.

    Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.

    Пример 1 . Найти решение уравнения

    2x +3y = 10(2)

    Решение . Выразим из равенства (2) переменную y через переменную x :

    Решение систем линейных уравнений с тремя неизвестными 7 класс(3)

    Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    где x – любое число.

    Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).

    Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Системы из двух линейных уравнений с двумя неизвестными

    Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид

    Решение систем линейных уравнений с тремя неизвестными 7 класс(4)

    Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .

    Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).

    Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.

    Равносильность систем уравнений обозначают, используя символ «Решение систем линейных уравнений с тремя неизвестными 7 класс»

    Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.

    Пример 2 . Решить систему уравнений

    Решение систем линейных уравнений с тремя неизвестными 7 класс(5)

    Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .

    С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.

    Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид

    Решение систем линейных уравнений с тремя неизвестными 7 класс(6)

    Теперь совершим над системой (6) следующие преобразования:

    • первое уравнение системы оставим без изменений;
    • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

    В результате система (6) преобразуется в равносильную ей систему

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Пример 3 . Найти все значения параметра p , при которых система уравнений

    Решение систем линейных уравнений с тремя неизвестными 7 класс(7)

    а) имеет единственное решение;

    б) имеет бесконечно много решений;

    в) не имеет решений.

    Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Следовательно, система (7) равносильна системе

    Решение систем линейных уравнений с тремя неизвестными 7 класс(8)

    Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):

    y (2 – p) (2 + p) = 2 + p(9)

    Если Решение систем линейных уравнений с тремя неизвестными 7 класс, то уравнение (9) имеет единственное решение

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Следовательно, система (8) равносильна системе

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Таким образом, в случае, когда Решение систем линейных уравнений с тремя неизвестными 7 класс, система (7) имеет единственное решение

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Если p = – 2 , то уравнение (9) принимает вид

    Решение систем линейных уравнений с тремя неизвестными 7 класс,

    и его решением является любое число Решение систем линейных уравнений с тремя неизвестными 7 класс. Поэтому решением системы (7) служит бесконечное множество всех пар чисел

    Решение систем линейных уравнений с тремя неизвестными 7 класс,

    где y – любое число.

    Если p = 2 , то уравнение (9) принимает вид

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    и решений не имеет, откуда вытекает, что и система (7) решений не имеет.

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Системы из трех линейных уравнений с тремя неизвестными

    Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид

    Решение систем линейных уравнений с тремя неизвестными 7 класс(10)

    Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.

    Пример 4 . Решить систему уравнений

    Решение систем линейных уравнений с тремя неизвестными 7 класс(11)

    Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .

    Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:

    • первое уравнение системы оставим без изменений;
    • ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
    • из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.

    В результате система (11) преобразуется в равносильную ей систему

    Решение систем линейных уравнений с тремя неизвестными 7 класс(12)

    Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:

    • первое и второе уравнения системы оставим без изменений;
    • из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.

    В результате система (12) преобразуется в равносильную ей систему

    Решение систем линейных уравнений с тремя неизвестными 7 класс(13)

    Из системы (13) последовательно находим

    Пример 5 . Решить систему уравнений

    Решение систем линейных уравнений с тремя неизвестными 7 класс(14)

    Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):

    Решение систем линейных уравнений с тремя неизвестными 7 класс

    Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.

    Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».

    💡 Видео

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    Алгебра 7 класс (Урок№48 - Решение систем двух линейных уравнений с двумя неизвестными.)Скачать

    Алгебра 7 класс (Урок№48 - Решение систем двух линейных уравнений с двумя неизвестными.)

    Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

    Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

    Видеоурок: решение систем линейных уравнений методом подстановки с тремя неизвестными. 7 классСкачать

    Видеоурок: решение систем линейных уравнений методом подстановки с тремя неизвестными. 7 класс

    Графический метод решения систем линейных уравнений 7 классСкачать

    Графический метод решения систем линейных уравнений 7 класс

    7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятияСкачать

    7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятия

    Система уравнений. Метод алгебраического сложенияСкачать

    Система уравнений. Метод алгебраического сложения

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

    Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

    Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

    7 класс, 39 урок, Метод алгебраического сложенияСкачать

    7 класс, 39 урок, Метод алгебраического сложения

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

    Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

    Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.

    Решение систем с тремя переменными. Практическая часть. 9 класс.Скачать

    Решение систем с тремя переменными. Практическая часть. 9 класс.
    Поделиться или сохранить к себе: