Решение систем линейных уравнений с двумя переменными способом подстановки 6 класс

6.9.2. Решение систем линейных уравнений методом подстановки

Для решения системы линейных уравнений с двумя переменными методом подстановки поступаем следующим образом:

1) выражаем одну переменную через другую в одном из уравнений системы (х через у или у через х);

2) подставляем полученное выражение в другое уравнение системы и получаем линейное уравнение с одной переменной;

3) решаем полученное линейное уравнение с одной переменной и находим значение этой переменной;

4) найденное значение переменной подставляем в выражение (1) для другой переменной и находим значение этой переменной.

Примеры. Решить методом подстановки систему линейных уравнений.

Решение систем линейных уравнений с двумя переменными способом подстановки 6 классВыразим х через у из 1-го уравнения. Получим: х=7+у. Подставим выражение (7+у) вместо х во 2-ое уравнение системы.

Мы получили уравнение: 3·(7+у)+2у=16. Это уравнение с одной переменной у. Решаем его. Раскроем скобки: 21+3у+2у=16. Собираем слагаемые с переменной у в левой части, а свободные слагаемые — в правой. При переносе слагаемого из одной части равенства в другую меняем знак слагаемого на противоположный.

Получаем: 3у+2у=16-21. Приводим подобные слагаемые в каждой части равенства. 5у=-5. Делим обе части равенства на коэффициент при переменной. у=-5:5; у=-1. Подставляем это значение у в выражение х=7+у и находим х. Получаем: х=7-1; х=6. Пара значений переменных х=6 и у=-1 является решением данной системы.

Записывают: (6; -1). Ответ: (6; -1). Эти рассуждения удобно записывать так, как показано ниже, т.е. системы уравнений — слева друг под другом. Справа — выкладки, необходимые пояснения, проверка решения и пр.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановкиСкачать

Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановки

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Немного теории.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение системы линейных уравнений методом подстановки

Алгоритм решения системы линейных уравнений методом подстановки

  1. Из любого уравнения системы выразить одну переменную через другую.
  2. Подставить во второе уравнение системы вместо переменной выражение, полученное на первом шаге.
  3. Решить второе уравнение относительно выраженной переменной.
  4. Подставить найденное значение переменной в выражение, полученное на первом шаге.
  5. Найти значение второй переменой.
  6. Записать ответ в виде упорядоченной пары найденных значений переменных.

Из второго уравнения выражаем y:

Подставляем выражение для y в первое уравнение:

Шаг 3 Решаем первое уравнение:

Подставляем значение x в выражение для y:

В последовательной записи:

$$ <left< begin 3x+y = 5 \ y-x = 1 end right.> Rightarrow <left< begin 3x+y = 5 \ y = x+1 end right.> Rightarrow <left< begin 3x+(x+1) = 5 \ y = x+1 end right.> Rightarrow <left< begin 4x = 5-1 \ y = x+1 end right.> Rightarrow $$ $$ Rightarrow <left< begin x = 1 \ y = x+1 end right.> Rightarrow <left< begin x = 1 \ y = 2end right.> $$

Примеры

Пример 1. Решите систему уравнений методом подстановки:

$ а) <left< begin 5x-4y = 3 \ 2x-3y = 4 end right.> Rightarrow <left< begin 5x-4y = 3 \ x = frac = 1,5y+2 end right.> Rightarrow <left< begin 5(1,5y+2)-4y = 3 \ x = 1,5y+2 end right.> Rightarrow $

$ Rightarrow <left< begin 7,5y+10-4y = 3 \ x=1,5y+2 end right.> Rightarrow <left< begin 3,5y = -7 \ x = 1,5y+2 end right.> Rightarrow <left< begin y = -2 \ x = 1,5y+2 end right.> Rightarrow <left< begin x = -1 \ y = -2end right.> $

$ б) <left< begin 4x-3y = 7 \ 3x-4y = 0 end right.> Rightarrow <left< begin 4x-3y = 7 \ y = frac x end right.> Rightarrow <left< begin 4x-3cdot frac x = 7 \ y = frac x end right.> Rightarrow <left< begin (4- frac)x = 7 \ y = frac x end right.> Rightarrow $

$Rightarrow <left< begin x = 7 cdot frac = 4 \ y = frac x = frac cdot 4 = 3 end right.> Rightarrow <left< beginx = 4 \ y = 3 end right.> $

$ в) <left< begin 5a-4b = 9 \ 2a+3b = -1 end right.> Rightarrow <left< begin 5a-4b = 9 \ a = frac = -1,5b-0,5 end right.> Rightarrow <left< begin 5(-1,5b-0,5)-4b = 9 \ a = -1,5b-0,5 end right.> Rightarrow $

$ Rightarrow <left< begin -7,5b-2,5-4b = 9 \ a = -1,5b-0,5 end right.> Rightarrow <left< begin-11,5b = 11,5 \ a = -1,5b-0,5 end right.> Rightarrow <left< begin a = 1 \ b = -1 end right.> $

$ г) <left< begin 7a+4b = 5 \ 3a+2b = 1 end right.> Rightarrow <left< begin 7a+4b = 5 \ b = frac = -1,5a+0,5 end right.> Rightarrow <left< begin 7a+4(-1,5a+0,5) = 5 \ b = -1,5a+0,5 end right.> Rightarrow $

$ Rightarrow <left< begin 7a-6a+2 = 5 \ b = -1,5a+0,5 end right.> Rightarrow <left< begin a = 3 \ b = -1,5cdot3+0,5 = -4 end right.> $

Пример 2. Найдите решение системы уравнений:

$а) <left< begin frac-y = 7 | times 4 \ 3x+ frac = 9 | times 2end right.> Rightarrow <left< begin x-4y = 28 \ 6x+y = 18 end right.> Rightarrow <left< begin x = 4y+28 = 4(y+7) \ 6 cdot 4(y+7)+y = 18 end right.> Rightarrow $

$Rightarrow <left< begin x = 4(y+7) \ 24y+168+y = 18 end right.> Rightarrow <left< begin x = 4(y+7) \ 25y = -150 end right.> Rightarrow <left< beginx = 4(-6+7) = 4 \ y = -6 end right.>$

$ в) <left< begin 3(5x-y)+14 = 5(x+y) \ 2(x-y)+9 = 3(x+2y)-16 end right.> Rightarrow <left< begin 15x-3y+14 = 5x+5y \ 2x-2y+9 = 3x+6y-16 end right.> Rightarrow $

$ Rightarrow <left< begin 10x-8y = -14 |:2 \ x+8y = 25 end right.> Rightarrow <left< begin 5x-4y = -7 \ x = -8y+25 end right.> Rightarrow <left< begin 5(-8y+25)-4y = -7 \ x = -8y+25 end right.> Rightarrow $

$ Rightarrow <left< begin -40y+125-4y = -7 \ x = -8y+25 end right.> Rightarrow <left< begin -44y = -132 \ x = -8y+25 end right.> Rightarrow <left< begin x = 1 \ y = 3 end right.> $

$ г) <left< begin 5-3(2x+7y) = x+y-52 \ 4+3(7x+2y) = 23x end right.> Rightarrow <left< begin 5-6x-21y = x+y-52 \ 4+21x+6y = 23x end right.> Rightarrow <left< begin 7x+22y = 57 \ 2x-6y = 4 |:2 end right.>$

$$ Rightarrow <left< begin 7x+22y = 57 \ x-3y = 2 end right.> Rightarrow <left< begin 7x+22y = 57 \ x = 3y+2 end right.> Rightarrow <left< begin 7(3y+2)+22y = 57 \ x = 3y+2 end right.> Rightarrow $$

$$ Rightarrow <left< begin 21y+14+22y = 57 \ x = 3y+2 end right.> Rightarrow <left< begin 43y = 43 \ x = 3y+2 end right.> Rightarrow <left< begin x = 5 \ y = 1 end right.>$$

Пример 3*. Найдите решение системы уравнений:

Перепишем систему и найдём решение для новых переменных:

$$ <left< begin 3a+8b = 5 \ 12b-a = 2 end right.> Rightarrow <left< begin 3(12b-2)+8b = 5 \ a = 12b-2 end right.> Rightarrow <left< begin 36b-6+8b = 5 \ a = 12b-2 end right.> Rightarrow $$

📹 Видео

Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановкиСкачать

Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановки

Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решение системы линейных уравнений с двумя переменными способом сложения. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом сложения. Практ. часть. 6 класс.

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Система с тремя переменнымиСкачать

Система с тремя переменными

Решение систем линейных уравнений способом подстановки.Скачать

Решение систем линейных уравнений способом подстановки.

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

6 класс Решение системы линейных уравнений с двумя переменными способом подстановки,Скачать

6 класс   Решение системы линейных уравнений с двумя переменными способом подстановки,

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс
Поделиться или сохранить к себе: