Решение систем линейных уравнений методом гаусса зейделя

Видео:Метод_Зейделя_ExcelСкачать

Метод_Зейделя_Excel

Метод Гаусса–Зейделя

Одним из самых распространенных итерационных методов, отличающийся простотой и легкостью программирования, является метод ГауссаЗейделя.

Проиллюстрируем сначала этот метод па примере решения системы

Решение систем линейных уравнений методом гаусса зейделя(2.27)

Предположим, что диагональные элементы а11, а22, а33отличны от нуля (в противном случае можно переставить уравнения). Выразим неизвестные х1, хх3 соответственно из первого, второго и третьего уравнений системы (2.27):

Решение систем линейных уравнений методом гаусса зейделя(2.28)

Решение систем линейных уравнений методом гаусса зейделя(2.29)

Решение систем линейных уравнений методом гаусса зейделя(2.30)

Зададим некоторые начальные (нулевые) приближения значений неизвестных: Решение систем линейных уравнений методом гаусса зейделя Решение систем линейных уравнений методом гаусса зейделя Решение систем линейных уравнений методом гаусса зейделяПодставляя эти значения в правую часть выражения (2.28), получаем новое (первое) приближение для х1:

Решение систем линейных уравнений методом гаусса зейделя

Используя это значение для x1 и приближение Решение систем линейных уравнений методом гаусса зейделядля х3, находим из (2.29) первое приближение для х2:

Решение систем линейных уравнений методом гаусса зейделя

И наконец, используя вычисленные значения Решение систем линейных уравнений методом гаусса зейделянаходим с помощью выражения (2.30) первое приближение для х3:

Решение систем линейных уравнений методом гаусса зейделя

На этом заканчивается первая итерация решения системы (2.28) — (2.30). Теперь с помощью значений х1(1), х2(1)и х3(1)можно таким же способом провести вторую итерацию, в результате которой будут найдены вторые приближения к решению: х1 = х1 (2), х2 = х2(2)и х3 = х3(2)и т.д.

Приближение с номером kможно вычислить, зная приближение с номером k– 1, как

Решение систем линейных уравнений методом гаусса зейделя

Итерационный процесс продолжается до тех пор, пока значения х1(k), х2(k)и х3(k)не станут близкими с заданной погрешностью к значениям х1(k-1), х2(k-1)и х3(k-1).

Пример. Решить с помощью метода Гаусса – Зейделя следующую систему уравнений:

Решение систем линейных уравнений методом гаусса зейделя

Легко проверить, что решение данной системы следующее: х1 = х2 = х3 = 1.

Решение. Выразим неизвестные х1, хх3соответственно из первого, второго и третьего уравнений:

Решение систем линейных уравнений методом гаусса зейделя

Решение систем линейных уравнений методом гаусса зейделя

В качестве начального приближения (как это обычно делается) примем х1= 0, х2 = 0, х3 = 0. Найдем новые приближения неизвестных:

Решение систем линейных уравнений методом гаусса зейделя

Аналогично вычислим следующие приближения:

Решение систем линейных уравнений методом гаусса зейделя

Итерационный процесс можно продолжать до получения малой разности между значениями неизвестных в двух последовательных итерациях.

Рассмотрим теперь систему п линейных уравнений с п неизвестными. Запишем ее в виде

Решение систем линейных уравнений методом гаусса зейделя

Здесь также будем предполагать, что все диагональные элементы отличны от нуля. Тогда в соответствии с методом Гаусса – Зейделя k-e приближение к решению можно представить в виде

Решение систем линейных уравнений методом гаусса зейделя(2.31)

Итерационный процесс продолжается до тех пор, пока все значения Решение систем линейных уравнений методом гаусса зейделяне станут близкими к Решение систем линейных уравнений методом гаусса зейделя, т.е. критерием завершения итераций является одно из условий (2.21) – (2.24).

Для сходимости итерационного процесса (2.31) достаточно, чтобы модули диагональных коэффициентов для каждого уравнения системы были не меньше сумм модулей всех остальных коэффициентов (преобладание диагональных элементов):

Решение систем линейных уравнений методом гаусса зейделя(2.32)

При этом хотя бы для одного уравнения неравенство должно выполняться строго. Эти условия являются достаточными для сходимости метода, но они не являются необходимыми, т.е. для некоторых систем итерации сходятся и при нарушении условий (2.32).

Алгоритм решения системы п линейных уравнений методом Гаусса – Зейделя представлен на рис.2.6. В качестве исходных данных вводят п, коэффициенты и правые части уравнений системы, погрешность ε, максимально допустимое число итераций М, а также начальные приближения переменных xi(i=1,2,…,n).Отметим, что начальные приближения можно не вводить в компьютер, а полагать их равными некоторым значениям (например, нулю). Критерием завершения итераций выбрано условие (2.22), в котором через δобозначена максимальная абсолютная величина разности Решение систем линейных уравнений методом гаусса зейделяи Решение систем линейных уравнений методом гаусса зейделя:

Решение систем линейных уравнений методом гаусса зейделя

Для удобства чтения структурограммы объясним другие обозначения: k— порядковый номер итерации; i– номер уравнения, а также переменного, которое вычисляется в соответствующем цикле; j– номер члена вида Решение систем линейных уравнений методом гаусса зейделяили Решение систем линейных уравнений методом гаусса зейделяв правой части соотношения (2.31). Итерационный процесс прекращается либо при δ Будет полезно почитать по теме:

Видео:Метод Зейделя Пример РешенияСкачать

Метод Зейделя Пример Решения

1.2.3. Метод Зейделя (метод Гаусса-Зейделя, метод последовательных замещений)

Метод Зейделя представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения неизвестных x1, х2, .

В этом методе, как и в методе простой итерации, необходимо привести систему к виду (3), чтобы диагональные коэффициенты были максимальными по модулю, и проверить условия сходимости. Если условия сходимости не выполняются, то нужно произвести элементарные преобразования (см. п. 4). Пусть дана система из трех линейных уравнений. Приведем ее к виду (3). Выберем произвольно начальные приближения корней: х1(0), х2(0), х3(0), стараясь, чтобы они в какой-то мере соответствовали искомым неизвестным. За нулевое приближение можно принять столбец свободных членов, т. е. х(0) = b

(т. е. x1(0)=b1, x2(0)=b2, x3(0)=b3). Найдем Первое приближение х(1) по формулам:

Решение систем линейных уравнений методом гаусса зейделя

Следует обратить внимание на особенность метода Зейделя, которая состоит в том, что полученное в первом уравнении значение х1(l) сразу же используется во втором уравнении, а значения х1(1), х2(1) – в третьем уравнении и т. д. То есть все найденные значения х1(1) подставляются в уравнения для нахождения хi+1(1) [6, 8].

Рабочие формулы для метода Зейделя для системы трех уравнений имеют следующий вид:

Решение систем линейных уравнений методом гаусса зейделя

Запишем в общем виде для системы n-уравнений рабочие формулы:

Решение систем линейных уравнений методом гаусса зейделя

Заметим, что теорема сходимости для метода простой итерации справедлива и для метода Зейделя.

Зададим определенную точность решения e, по достижении которой итерационный процесс завершается, т. е. решение продолжается до тех пор, пока не будет выполнено условие для всех уравнений: Решение систем линейных уравнений методом гаусса зейделягде i=1,2,3,…,n.

Пример №2. Методом Зейделя решить систему с точностью e = 10-3:

Решение систем линейных уравнений методом гаусса зейделя

1. Приведем систему к виду:

Решение систем линейных уравнений методом гаусса зейделя

2. В качестве начального вектора х(0) возьмем элементы столбца свободных членов, округлив их значения до двух знаков после запятой:

Решение систем линейных уравнений методом гаусса зейделя

3. Проведем итерации методом Зейделя. При k = 1

Решение систем линейных уравнений методом гаусса зейделя.

При вычислении х2(1) используем уже полученное значение х1(1) =

Решение систем линейных уравнений методом гаусса зейделя.

При вычислении х3(1) используем значения х1(1) и х2(1):

Решение систем линейных уравнений методом гаусса зейделя

Наконец, используя значения х1(1), х2(1), х3(1), получаем:

Решение систем линейных уравнений методом гаусса зейделя

Аналогичным образом ведем вычисления при k=2 и k=3. При k= 2:

Решение систем линейных уравнений методом гаусса зейделя

Решение систем линейных уравнений методом гаусса зейделя

Найдем модули разностей значений Решение систем линейных уравнений методом гаусса зейделяпри k = 2:

Решение систем линейных уравнений методом гаусса зейделя

Они меньше заданного числа e, поэтому в качестве решения возьмем: x1 = 0,80006, x2 = 1,00002, x3 = 1,19999, x4 = 1,40000.

Видео:9 Метод Зейделя Ручной счет Решение системы линейных уравнений СЛАУСкачать

9 Метод Зейделя Ручной счет Решение системы линейных уравнений СЛАУ

МЕТОД ГАУССА-ЗЕЙДЕЛЯ: ОБЪЯСНЕНИЕ, ПРИЛОЖЕНИЯ, ПРИМЕРЫ — МАТЕМАТИКА — 2022

Метод Гаусса-Зейделя представляет собой итерационную процедуру нахождения приближенных решений системы линейных алгебраических уравнений с произвольно выбранной точностью. Этот метод применяется к квадратным матрицам с ненулевыми элементами на диагоналях, и сходимость гарантируется, если матрица диагонально доминирует.

Он был создан Карлом Фридрихом Гауссом (1777-1855), который провел частную демонстрацию одному из своих учеников в 1823 году. Позднее он был официально опубликован Филиппом Людвигом фон Зайделем (1821-1896) в 1874 году, отсюда и название обоих математиков.

Решение систем линейных уравнений методом гаусса зейделя

Рис. 1. Метод Гаусса-Зейделя быстро сходится для получения решения системы уравнений. Источник: Ф. Сапата.

Для полного понимания метода необходимо знать, что матрица является доминирующей по диагонали, когда абсолютное значение диагонального элемента каждой строки больше или равно сумме абсолютных значений других элементов той же строки.

Математически это выражается так:

Решение систем линейных уравнений методом гаусса зейделя

Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Объяснение на простом случае

Чтобы проиллюстрировать, из чего состоит метод Гаусса-Зейделя, мы возьмем простой случай, в котором значения X и Y могут быть найдены в системе линейных уравнений 2 × 2, показанной ниже:

Видео:Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Шаги, которым нужно следовать

1- Во-первых, необходимо определить, является ли конвергенция безопасной. Сразу видно, что это, по сути, диагонально доминирующая система, поскольку в первой строке первый коэффициент имеет более высокое абсолютное значение, чем другие в первой строке:

Аналогичным образом, второй коэффициент во второй строке также доминирует по диагонали:

2- Переменные X и Y очищены:

3- Помещается произвольное начальное значение, называемое «семя»: Xo = 1, I = 2.

4-Итерация начинается: для получения первого приближения X1, Y1 начальное число подставляется в первое уравнение этапа 2, а результат — во второе уравнение этапа 2:

X1 = (1-2 I) / 5 = (1-2 × 2) / 5 = -3/5

Y1 = X1 / 4 = (-3/5) / 4 = -3/20

5- Мы действуем аналогичным образом, чтобы получить второе приближение решения системы уравнений:

X2 = (1-2 Y1) / 5 = (1-2x (-3/20)) / 5 = 13/50

Y2 = X2 / 4 = (13/50) / 4 = 13/200

6- Третья итерация:

X3 = (1-2 Y2) / 5 = (1-2 (13/200)) / 5 = 87/500

Y3 = X3 / 4 = (87/500) / 4 = 87/2000

7- Четвертая итерация, как последняя итерация этого иллюстративного случая:

X4 = (1-2 Y3) / 5 = (1-2 (87/2000)) / 5 = 913/5000

Y4 = X4 / 4 = (913/5000) / 4 = 913/20000

Эти значения достаточно хорошо согласуются с решением, найденным другими методами разрешения. Читатель может быстро проверить это с помощью математической онлайн-программы.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Анализ метода

Как видно, в методе Гаусса-Зейделя приблизительные значения, полученные для предыдущей переменной на том же шаге, необходимо подставить в следующую переменную. Это отличает его от других итерационных методов, таких как метод Якоби, в котором каждый шаг требует приближения предыдущего этапа.

Метод Гаусса-Зейделя не является параллельной процедурой, в отличие от метода Гаусса-Жордана. Это также причина того, что метод Гаусса-Зейделя имеет более быструю сходимость — за меньшее количество шагов — чем метод Жордана.

Что касается условия диагонального преобладания матрицы, то это не всегда выполняется. Однако в большинстве случаев для выполнения условия достаточно простой замены строк из исходной системы. Более того, метод почти всегда сходится, даже если не выполняется условие диагонального доминирования.

Предыдущий результат, полученный четырьмя итерациями метода Гаусса-Зейделя, можно записать в десятичной форме:

Точное решение предложенной системы уравнений:

Таким образом, всего за 4 итерации вы получите результат с точностью до одной тысячной (0,001).

На рисунке 1 показано, как последовательные итерации быстро сходятся к точному решению.

Видео:Метод Гуасса Зейделя, градиентный методСкачать

Метод Гуасса Зейделя, градиентный метод

Приложения

Метод Гаусса-Зейделя не ограничивается только системой линейных уравнений 2 × 2. Предыдущая процедура может быть обобщена для решения линейной системы из n уравнений с n неизвестными, которая представлена ​​в виде матрицы:

А Х = Ь

Где A — это матрица размера nxn, а X — компоненты вектора n переменных, которые необходимо вычислить; а b — вектор, содержащий значения независимых членов.

Решение систем линейных уравнений методом гаусса зейделя

Чтобы обобщить последовательность итераций, примененную в иллюстративном случае к системе nxn, из которой требуется вычислить переменную Xi, будет применяться следующая формула:

Решение систем линейных уравнений методом гаусса зейделя

В этом уравнении:

— k — индекс значения, полученного на итерации k.

-k + 1 указывает новое значение в следующем.

Конечное количество итераций определяется, когда значение, полученное на итерации k + 1, отличается от значения, полученного непосредственно перед этим, на величину ε, которая является в точности желаемой точностью.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Примеры метода Гаусса-Зейделя

Видео:12. Решение систем линейных уравнений методом ГауссаСкачать

12. Решение систем линейных уравнений методом Гаусса

— Пример 1

Напишите общий алгоритм, позволяющий вычислить вектор приближенных решений X линейной системы уравнений nxn, учитывая матрицу коэффициентов A, вектор независимых членов b , количество итераций (i ter) и начальное значение или «seed «вектора X .

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Решение

Алгоритм состоит из двух циклов «До», один для количества итераций, а другой — для количества переменных. Это было бы так:

X: = (1 / A) * (b — ∑ j = 1 n (A * X) + A * X)

Видео:Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

— Пример 2

Проверьте работу предыдущего алгоритма через его приложение в бесплатной математической программе SMath Studio, доступной для Windows и Android. Возьмем в качестве примера случай с матрицей 2 × 2, который помог нам проиллюстрировать метод Гаусса-Зейделя.

Видео:Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минутСкачать

Метод Гаусса и метод Жордана-Гаусса ➜ 2 метода за 7 минут

Решение

Решение систем линейных уравнений методом гаусса зейделя

Рис. 2. Решение системы уравнений для примера 2 x 2 с использованием программного обеспечения SMath Studio. Источник: Ф. Сапата.

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

— Пример 3

Примените алгоритм Гаусса-Зейделя для следующей системы уравнений 3 × 3, которая была предварительно упорядочена таким образом, что коэффициенты диагонали являются доминирующими (то есть имеют большее абсолютное значение, чем абсолютные значения коэффициентов тот же ряд):

9 Х1 + 2 Х2 — Х3 = -2

7 Х1 + 8 Х2 + 5 Х3 = 3

3 Х1 + 4 Х2 — 10 Х3 = 6

Используйте нулевой вектор в качестве начального числа и рассмотрите пять итераций. Прокомментируйте результат.

Видео:Решение систем линейных алгебраических уравнений методом Зейделя (устар.)Скачать

Решение систем линейных алгебраических уравнений методом Зейделя (устар.)

Решение

Решение систем линейных уравнений методом гаусса зейделя

Рисунок 3. Решение системы уравнений решенного примера 3 с помощью SMath Studio. Источник: Ф. Сапата.

Для той же системы с 10 итерациями вместо 5 получаются следующие результаты: X1 = -0,485; X2 = 1,0123; X3 = -0,3406

Это говорит нам, что пяти итераций достаточно, чтобы получить три десятичных знака точности, и что метод быстро сходится к решению.

Видео:4 Теория: Численные методы решения системы линейных уравн СЛАУ: Гаусса, простой итерации, ЗейделяСкачать

4 Теория: Численные методы решения системы линейных уравн СЛАУ: Гаусса, простой итерации, Зейделя

— Пример 4

Используя алгоритм Гаусса-Зейделя, указанный выше, найдите решение системы уравнений 4 × 4, приведенной ниже:

10 х1 — х2 + 2 х3 + 0 х4 = 6

-1 x1 + 11 x2 — 1 x3 + 3 x4 = 25

2 x1 — 1 x2 + 10 x3 — 1 x4 = -11

0 х1 + 3 х2 — 1 х3 + 8 х4 = 15

Чтобы запустить метод, используйте это семя:

x1 = 0, x2 = 0, x3 = 0 и x4 = 0

Рассмотрим 10 итераций и оценим погрешность результата, сравнивая с итерацией номер 11.

Видео:6 Метод Зейделя Блок-схема Mathcad Calc Excel Решение системы линейных уравнений СЛАУСкачать

6 Метод Зейделя Блок-схема Mathcad Calc Excel Решение системы линейных уравнений СЛАУ

Решение

Решение систем линейных уравнений методом гаусса зейделя

Рисунок 4. Решение системы уравнений решенного примера 4 с помощью SMath Studio. Источник: Ф. Сапата.

При сравнении со следующей итерацией (номер 11) результат идентичен. Наибольшие различия между двумя итерациями составляют порядка 2 × 10 -8 , что означает, что отображаемое решение имеет точность не менее семи десятичных знаков.

📺 Видео

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУСкачать

метод Гаусса СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ решение СЛАУ

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Решение системы линейных уравнений методом Гаусса в ExcelСкачать

Решение системы линейных уравнений методом Гаусса в Excel
Поделиться или сохранить к себе: