Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Метод Рунге-Кутты 4-го порядка для решения дифференциального уравнения

Учитывая следующие входные данные,

  • Обычное дифференциальное уравнение, которое определяет значение dy / dx в виде x и y.
  • Начальное значение y, т. Е. Y (0)

Таким образом, мы приведены ниже.

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Задача состоит в том, чтобы найти значение неизвестной функции y в заданной точке x.

Метод Рунге-Кутты находит приблизительное значение y для данного x. Только обыкновенные дифференциальные уравнения первого порядка могут быть решены с помощью метода 4-го порядка Рунге Кутты.

Ниже приведена формула, используемая для вычисления следующего значения y n + 1 из предыдущего значения y n . Значения n равны 0, 1, 2, 3,… (x — x0) / h. Здесь h — высота шага, а x n + 1 = x 0 + h

, Меньший размер шага означает большую точность.

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка
Формула в основном вычисляет следующее значение y n + 1, используя текущее значение y n плюс средневзвешенное значение четырех приращений.

  • k 1 — приращение, основанное на наклоне в начале интервала, используя y
  • K 2 представляет собой приращение на основе наклона в средней точке интервала, с использованием Y + 1 HK / 2.
  • к 3 снова приращение на основе наклона в средней точке, используя при помощи у + кк 2/2.
  • k 4 — это приращение, основанное на наклоне в конце интервала, с использованием y + hk 3 .

Этот метод является методом четвертого порядка, это означает, что локальная ошибка усечения имеет порядок O (h 5 ), в то время как общая накопленная ошибка составляет порядок O (h 4 ).

Ниже приведена реализация приведенной выше формулы.

// C программа для реализации метода Рунге Кутты
#include

// Пример дифференциального уравнения «dy / dx = (x — y) / 2»

float dydx( float x, float y)

// Находит значение y для заданного x, используя размер шага h
// и начальное значение y0 в x0.

float rungeKutta( float x0, float y0, float x, float h)

// Подсчитать количество итераций, используя размер шага или

int n = ( int )((x — x0) / h);

float k1, k2, k3, k4, k5;

// Итерация по количеству итераций

// Применить формулы Рунге Кутты, чтобы найти

// следующее значение у

k2 = h*dydx(x0 + 0.5*h, y + 0.5*k1);

k3 = h*dydx(x0 + 0.5*h, y + 0.5*k2);

k4 = h*dydx(x0 + h, y + k3);

// Обновить следующее значение y

y = y + (1.0/6.0)*(k1 + 2*k2 + 2*k3 + k4);;

// Обновляем следующее значение x

float x0 = 0, y = 1, x = 2, h = 0.2;

printf ( «nThe value of y at x is : %f» ,

rungeKutta(x0, y, x, h));

// Java-программа для реализации метода Рунге Кутты

double dydx( double x, double y)

// Находит значение y для заданного x, используя размер шага h

// и начальное значение y0 в x0.

double rungeKutta( double x0, double y0, double x, double h)

differential d1 = new differential();

// Подсчитать количество итераций, используя размер шага или

int n = ( int )((x — x0) / h);

double k1, k2, k3, k4, k5;

// Итерация по количеству итераций

for ( int i = 1 ; i

// Применить формулы Рунге Кутты, чтобы найти

// следующее значение у

k1 = h * (d1.dydx(x0, y));

k2 = h * (d1.dydx(x0 + 0.5 * h, y + 0.5 * k1));

k3 = h * (d1.dydx(x0 + 0.5 * h, y + 0.5 * k2));

k4 = h * (d1.dydx(x0 + h, y + k3));

// Обновить следующее значение y

y = y + ( 1.0 / 6.0 ) * (k1 + 2 * k2 + 2 * k3 + k4);

// Обновляем следующее значение x

public static void main(String args[])

differential d2 = new differential();

double x0 = 0 , y = 1 , x = 2 , h = 0.2 ;

System.out.println( «nThe value of y at x is : «

+ d2.rungeKutta(x0, y, x, h));

// Этот код предоставлен Prateek Bhindwar

# Программа Python для реализации метода Рунге Кутты
# Пример дифференциального уравнения «dy / dx = (x — y) / 2»

# Находит значение y для заданного x, используя размер шага h
# и начальное значение y0 при x0.

def rungeKutta(x0, y0, x, h):

# Подсчитать количество итераций, используя размер шага или

n = ( int )((x — x0) / h)

# Итерировать по количеству итераций

for i in range ( 1 , n + 1 ):

«Apply Runge Kutta Formulas to find next value of y»

k1 = h * dydx(x0, y)

k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1)

k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2)

k4 = h * dydx(x0 + h, y + k3)

# Обновить следующее значение y

y = y + ( 1.0 / 6.0 ) * (k1 + 2 * k2 + 2 * k3 + k4)

# Обновить следующее значение x

print ‘The value of y at x is:’ , rungeKutta(x0, y, x, h)

# Этот код предоставлен Prateek Bhindwar

// C # программа для реализации Runge
// метод Кутты

static double dydx( double x, double y)

// Находит значение y для данного x

// используя размер шага h и начальный

// значение y0 в x0.

static double rungeKutta( double x0,

double y0, double x, double h)

// Подсчитать количество итераций используя

// размер шага или высота шага h

int n = ( int )((x — x0) / h);

double k1, k2, k3, k4;

// Итерация по количеству итераций

for ( int i = 1; i

// Применяем формулы Рунге Кутты

// найти следующее значение у

k1 = h * (dydx(x0, y));

k2 = h * (dydx(x0 + 0.5 * h,

k3 = h * (dydx(x0 + 0.5 * h,

k4 = h * (dydx(x0 + h, y + k3));

// Обновить следующее значение y

y = y + (1.0 / 6.0) * (k1 + 2

// Обновляем следующее значение x

public static void Main()

double x0 = 0, y = 1, x = 2, h = 0.2;

Console.WriteLine( «nThe value of y»

+ rungeKutta(x0, y, x, h));

// Этот код предоставлен Sam007.

// PHP-программа для реализации
// метод Рунге Кутта

// Пример дифференциального уравнения
// «dy / dx = (x — y) / 2»

function dydx( $x , $y )

return (( $x — $y ) / 2);

// Находит значение y для
// дано х, используя размер шага h
// и начальное значение y0 в x0.

function rungeKutta( $x0 , $y0 , $x , $h )

// Подсчитать количество итераций

// используя размер шага или шаг

$k1 ; $k2 ; $k3 ; $k4 ; $k5 ;

// Итерация по номеру

for ( $i = 1; $i $n ; $i ++)

// Применить Рунге Кутта

// формулы для поиска

// следующее значение у

$k1 = $h * dydx( $x0 , $y );

$k2 = $h * dydx( $x0 + 0.5 * $h ,

$k3 = $h * dydx( $x0 + 0.5 * $h ,

$k4 = $h * dydx( $x0 + $h , $y + $k3 );

// Обновить следующее значение y

$y = $y + (1.0 / 6.0) * ( $k1 + 2 *

// Обновляем следующее значение x

echo «The value of y at x is : » ,

rungeKutta( $x0 , $y , $x , $h );

// Этот код предоставлен anuj_67.
?>

Сложность по времени вышеупомянутого решения составляет O (n), где n — (x-x0) / ч.

Некоторые полезные ресурсы для подробных примеров и большего количества объяснения.
http://w3.gazi.edu.tr/

Эта статья предоставлена Арпит Агарвал . Если вам нравится GeeksforGeeks и вы хотите внести свой вклад, вы также можете написать статью и отправить ее по почте на contrib@geeksforgeeks.org. Смотрите свою статью, появляющуюся на главной странице GeeksforGeeks, и помогите другим вундеркиндам.

Пожалуйста, напишите комментарии, если вы обнаружите что-то неправильное, или вы хотите поделиться дополнительной информацией по обсуждаемой теме

Содержание
  1. 7.4. Метод Рунге-Кутта 4 порядка
  2. Численное решение математических моделей объектов заданных системами дифференциальных уравнений
  3. Введение:
  4. Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ
  5. Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения с использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга
  6. Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга
  7. Решение краевой задачи с поточно разделёнными краевыми условиями
  8. Вывод
  9. 🎬 Видео

Видео:3_11. Алгоритм Рунге-КуттыСкачать

3_11. Алгоритм Рунге-Кутты

7.4. Метод Рунге-Кутта 4 порядка

На практике наибольшее распространение получил метод Рунге-Кутта 4-го порядка, в котором усреднение проводится по трём точкам, формула Эйлера на каждом отрезке используется 4 раза: в начале отрезка, дважды в его середине и в конце отрезка.

Расчетные формулы метода для дифференциального уравнения (7.3) имеют вид:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка, (7.8)

Где i = 0, 1, …., n-1 — номер узла;

Xi = a + i×h — координата узла;

У0 = у(х0) — начальное условие.

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Погрешность метода dМ = О(h5).

Схема алгоритма решения ОДУ методом Рунге-Кутта 4-го порядка отличается алгоритмом расчёта новой точки (Рис. 7.5).

Пример 7.4. Решение ранее рассмотренного уравнения (пример 7.1) методом Рунге-Кутта 4 порядка.

Y’ — 2×y + x2 = 1, x Î [0;1], y(0) = 1.

Пусть n = 10 , h = (1 — 0)/10 = 0,1.

Начальная точка x0 = 0, y0 = 1.

Рассчет первой точки.

Сначала вычислим значения C0, C1, C2, C3:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Вычислим значение y1:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Аналогично можно вычислить значения функции во 2, 3, . , 10 точках.

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Рис. 7.7. Схема алгоритма расчета новой точки методом Рунге-Кутта 4-го порядка.

Общая характеристика методов:

1. Все методы являются Одношаговыми, то есть для вычисления значения функции в новой точке используется ее значение в предыдущей точке. Это свойство называется Самостартованием.

2. Все методы легко обобщаются на системы дифференциальных уравнений 1-го порядка.

Видео:Интегрирование систем дифференциальных уравнений методом Рунге-Кутта 4-ог порядка в Arduino IDE.Скачать

Интегрирование систем дифференциальных уравнений методом Рунге-Кутта 4-ог порядка в Arduino IDE.

Численное решение математических моделей объектов заданных системами дифференциальных уравнений

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).

Краткие теоретические и фактические данные по рассматриваемым методам и программным средствам для численного решения СДУ

Для одного дифференциального уравнения n – го порядка, задача Коши состоит в нахождении функции, удовлетворяющей равенству:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

и начальным условиям

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Перед решением эта задача должна быть переписана в виде следующей СДУ

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(1)

с начальными условиями

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Модуль имеет две функции ode() и odeint(), предназначенные для решения систем обыкновенных дифференциальных уравнений (ОДУ) первого порядка с начальными условиями в одной точке (задача Коши). Функция ode() более универсальная, а функция odeint() (ODE integrator) имеет более простой интерфейс и хорошо решает большинство задач.

Функция odeint() имеет три обязательных аргумента и много опций. Она имеет следующий формат odeint(func, y0, t[,args=(), . ]) Аргумент func – это имя Python функции двух переменных, первой из которых является список y=[y1,y2. yn], а второй – имя независимой переменной.

Функция func должна возвращать список из n значений функций Решение систем дифференциальных уравнений методом рунге кутта 4 порядкапри заданном значении независимого аргумента t. Фактически функция func(y,t) реализует вычисление правых частей системы (1).

Второй аргумент y0 функции odeint() является массивом (или списком) начальных значений Решение систем дифференциальных уравнений методом рунге кутта 4 порядкапри t=t0.

Третий аргумент является массивом моментов времени, в которые вы хотите получить решение задачи. При этом первый элемент этого массива рассматривается как t0.

Функция odeint() возвращает массив размера len(t) x len(y0). Функция odeint() имеет много опций, управляющих ее работой. Опции rtol (относительная погрешность) и atol (абсолютная погрешность) определяют погрешность вычислений ei для каждого значения yi по формуле

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Они могут быть векторами или скалярами. По умолчанию

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Вторая функция модуля scipy.integrate, которая предназначена для решения дифференциальных уравнений и систем, называется ode(). Она создает объект ОДУ (тип scipy.integrate._ode.ode). Имея ссылку на такой объект, для решения дифференциальных уравнений следует использовать его методы. Аналогично функции odeint(), функция ode(func) предполагает приведение задачи к системе дифференциальных уравнений вида (1) и использовании ее функции правых частей.

Отличие только в том, что функция правых частей func(t,y) первым аргументом принимает независимую переменную, а вторым – список значений искомых функций. Например, следующая последовательность инструкций создает объект ODE, представляющий задачу Коши.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

При численном решении задачи Коши

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(2)

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(3)

по известному решению в точке t =0 необходимо найти из уравнения (3) решение при других t. При численном решении задачи (2),(3) будем использовать равномерную, для простоты, сетку по переменной t с шагом т > 0.

Приближенное решение задачи (2), (3) в точке Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаобозначим Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Метод сходится в точке Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаесли Решение систем дифференциальных уравнений методом рунге кутта 4 порядкапри Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Метод имеет р-й порядок точности, если Решение систем дифференциальных уравнений методом рунге кутта 4 порядка, р > 0 при Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Простейшая разностная схема для приближенного решения задачи (2),(3) есть

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(4)

При Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаимеем явный метод и в этом случае разностная схема аппроксимирует уравнение (2) с первым порядком. Симметричная схема Решение систем дифференциальных уравнений методом рунге кутта 4 порядкав (4) имеет второй порядок аппроксимации. Эта схема относится к классу неявных — для определения приближенного решения на новом слое необходимо решать нелинейную задачу.

Явные схемы второго и более высокого порядка аппроксимации удобно строить, ориентируясь на метод предиктор-корректор. На этапе предиктора (предсказания) используется явная схема

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(5)

а на этапе корректора (уточнения) — схема

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

В одношаговых методах Рунге—Кутта идеи предиктора-корректора реализуются наиболее полно. Этот метод записывается в общем виде:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(6),

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Формула (6) основана на s вычислениях функции f и называется s-стадийной. Если Решение систем дифференциальных уравнений методом рунге кутта 4 порядкапри Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаимеем явный метод Рунге—Кутта. Если Решение систем дифференциальных уравнений методом рунге кутта 4 порядкапри j>1 и Решение систем дифференциальных уравнений методом рунге кутта 4 порядкато Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаопределяется неявно из уравнения:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(7)

О таком методе Рунге—Кутта говорят как о диагонально-неявном. Параметры Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаопределяют вариант метода Рунге—Кутта. Используется следующее представление метода (таблица Бутчера)

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Одним из наиболее распространенных является явный метод Рунге—Кутта четвертого порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(8)

Метод Рунге—Кутта— Фельберга

Привожу значение расчётных коэффициентов Решение систем дифференциальных уравнений методом рунге кутта 4 порядкаметода

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(9)

С учётом(9) общее решение имеет вид:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(10)

Это решение обеспечивает пятый порядок точности, остаётся его адаптировать к Python.

Вычислительный эксперимент по определению абсолютной погрешности численного решения нелинейного дифференциального уравнения Решение систем дифференциальных уравнений методом рунге кутта 4 порядкас использованием обеих функций def odein(),def oden() модуля scipy.integrate и адаптированного к Python методов Рунге—Кутта и Рунге—Кутта— Фельберга

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Адаптированные к Python методы Рунге—Кутта и Рунге—Кутта— Фельберга имеют меньшую абсолютную, чем решение с применением функции odeint, но большую, чем с использованием функции edu. Необходимо провести исследование быстродействия.

Численный эксперимент по сравнению быстродействия численного решения СДУ при использовании функции ode с атрибутом dopri5 (метод Рунге – Кутты 5 порядка) и с использованием адаптированного к Python метода Рунге—Кутта— Фельберга

Сравнительный анализ проведём на примере модельной задачи, приведенной в [2]. Чтобы не повторять источник, приведу постановку и решение модельной задачи из [2].

Решим задачу Коши, описывающую движение тела, брошенного с начальной скоростью v0 под углом α к горизонту в предположении, что сопротивление воздуха пропорционально квадрату скорости. В векторной форме уравнение движения имеет вид

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

где Решение систем дифференциальных уравнений методом рунге кутта 4 порядка– радиус вектор движущегося тела, Решение систем дифференциальных уравнений методом рунге кутта 4 порядка– вектор скорости тела, Решение систем дифференциальных уравнений методом рунге кутта 4 порядка– коэффициент сопротивления, вектор Решение систем дифференциальных уравнений методом рунге кутта 4 порядкасилы веса тела массы m, g – ускорение свободного падения.

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Особенность этой задачи состоит в том, что движение заканчивается в заранее неизвестный момент времени, когда тело падает на землю. Если обозначить Решение систем дифференциальных уравнений методом рунге кутта 4 порядка, то в координатной форме мы имеем систему уравнений:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

К системе следует добавить начальные условия: Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(h начальная высота), Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Положим Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Тогда соответствующая система ОДУ 1 – го порядка примет вид:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Для модельной задачи положим Решение систем дифференциальных уравнений методом рунге кутта 4 порядка. Опуская довольно обширное описание программы, приведу только листинг из комментариев к которому, думаю, будет ясен принцип её работы. В программу добавлен отсчёт времени работы для сравнительного анализа.

Flight time = 1.2316 Distance = 5.9829 Height =1.8542
Flight time = 1.1016 Distance = 4.3830 Height =1.5088
Flight time = 1.0197 Distance = 3.5265 Height =1.2912
Flight time = 0.9068 Distance = 2.5842 Height =1.0240
Время на модельную задачу: 0.454787

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Для реализации средствами Python численного решения СДУ без использования специальных модулей, мною была предложена и исследована следующая функция:

def increment(f, t, y, tau
k1=tau*f(t,y)
k2=tau*f(t+(1/4)*tau,y+(1/4)*k1)
k3 =tau *f(t+(3/8)*tau,y+(3/32)*k1+(9/32)*k2)
k4=tau*f(t+(12/13)*tau,y+(1932/2197)*k1-(7200/2197)*k2+(7296/2197)*k3)
k5=tau*f(t+tau,y+(439/216)*k1-8*k2+(3680/513)*k3 -(845/4104)*k4)
k6=tau*f(t+(1/2)*tau,y-(8/27)*k1+2*k2-(3544/2565)*k3 +(1859/4104)*k4-(11/40)*k5)
return (16/135)*k1+(6656/12825)*k3+(28561/56430)*k4-(9/50)*k5+(2/55)*k6

Функция increment(f, t, y, tau) обеспечивает пятый порядок численного метода решения. Остальные особенности программы можно посмотреть в следующем листинге:

Время на модельную задачу: 0.259927

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Предложенная программная реализация модельной задачи без использования специальных модулей имеет почти в двое большее быстродействие, чем с функцией ode, однако нельзя забывать, что ode имеет более высокую точность численного решения и возможности выбора метода решения.

Решение краевой задачи с поточно разделёнными краевыми условиями

Приведем пример некоторой конкретной краевой задачи с поточно разделенными краевыми условиями:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(11)

Для решения задачи (11) используем следующий алгоритм:

1. Решаем первые три неоднородные уравнения системы (11) с начальными условиями
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка
Введем обозначение для решения задачи Коши:
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

2. Решаем первые три однородные уравнения системы (11) с начальными условиями
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка
Введем обозначение для решения задачи Коши:
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

3. Решаем первые три однородные уравнения системы (11) с начальными условиями

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Введем обозначение для решения задачи Коши:

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

4. Общее решение краевой задачи (11) при помощи решений задач Коши записывается в виде линейной комбинации решений:
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка
где p2, p3 — некоторые неизвестные параметры.

5. Для определения параметров p2, p3, используем краевые условия последних двух уравнений (11), то есть условия при x = b. Подставляя, получим систему линейных уравнений относительно неизвестных p2, p3:
Решение систем дифференциальных уравнений методом рунге кутта 4 порядка(12)
Решая (12), получим соотношения для p2, p3.

По приведенному алгоритму с применением метода Рунге—Кутта—Фельберга получим следующую программу:

y0[0]= 0.0
y1[0]= 1.0
y2[0]= 0.7156448588231397
y3[0]= 1.324566562303714
y0[N-1]= 0.9900000000000007
y1[N-1]= 0.1747719838716767
y2[N-1]= 0.8
y3[N-1]= 0.5000000000000001
Время на модельную задачу: 0.070878

Решение систем дифференциальных уравнений методом рунге кутта 4 порядка

Вывод

Разработанная мною программа отличается от приведенной в [3] меньшей погрешностью, что подтверждает приведенный в начале статьи сравнительный анализ функции odeint с реализованным на Python метода Рунге—Кутта—Фельберга.

3. Н.М. Полякова, Е.В. Ширяева Python 3. Создание графического интерфейса пользователя (на примере решения методом пристрелки краевой задачи для линейных обыкновенных дифференциальных уравнений). Ростов-на-Дону 2017.

🎬 Видео

Решение ОДУ методом Рунге-Кутта 4 порядка (программа)Скачать

Решение ОДУ методом Рунге-Кутта 4 порядка (программа)

6.4 Явные методы Рунге-КуттыСкачать

6.4 Явные методы Рунге-Кутты

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

4a. Методы Рунге-КуттаСкачать

4a. Методы Рунге-Кутта

Программируем метод Рунге-Кутта 4 порядкаСкачать

Программируем метод Рунге-Кутта 4 порядка

Решение ОДУ: метод Рунге КуттаСкачать

Решение ОДУ: метод Рунге Кутта

Метод ЭйлераСкачать

Метод Эйлера

Численные методы решения ДУ: метод Рунге-КуттаСкачать

Численные методы решения ДУ: метод Рунге-Кутта

04 Метод Рунге-Кутты 4-го порядкаСкачать

04 Метод Рунге-Кутты 4-го порядка

Решение ОДУ методом Рунге КуттаСкачать

Решение ОДУ методом Рунге Кутта

Метод Рунге Кутты 2 и 4 порядковСкачать

Метод Рунге Кутты 2 и 4 порядков

Метод Эйлера. Решение систем ДУСкачать

Метод Эйлера. Решение систем ДУ

06 Неявные методы Рунге-КутыСкачать

06 Неявные методы Рунге-Куты

6.1 Численные методы решения задачи Коши для ОДУСкачать

6.1 Численные методы решения задачи Коши для ОДУ

Метод Эйлера. Метод Рунге-Кутта. Классический метод Рунге-Кутта 4 порядка точности. Лекция №9Скачать

Метод Эйлера. Метод Рунге-Кутта. Классический метод Рунге-Кутта 4 порядка точности. Лекция №9

Лабораторная работа 1. Решение систем обыкновенных дифференциальных уравненийСкачать

Лабораторная работа 1. Решение систем обыкновенных дифференциальных уравнений

Решение ОДУ методом Рунге КуттаСкачать

Решение ОДУ методом Рунге Кутта
Поделиться или сохранить к себе: