Содержание:
- Рациональные уравнения. Равносильные уравнения
- Применение условия равенства дроби нулю
- Пример №202
- Использование основного свойства пропорции
- Пример №203
- Метод умножения обеих частей уравнения на общий знаменатель дробей
- Пример №204
- Пример №205
- Степень с целым показателем
- Основные определения, примеры системы двух уравнений
- Конспект урока математики «Рациональные уравнения»
- 📸 Видео
Видео:9 класс, 8 урок, Уравнения с двумя переменнымиСкачать
Рациональные уравнения. Равносильные уравнения
два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.
Так, например, равносильными будут уравнения
Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.
Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.
1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;
3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Левая и правая части каждого из них являются рациональными выражениями.
Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.
В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.
Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.
Применение условия равенства дроби нулю
Напомним, что когда
Пример №202
Решите уравнение
Решение:
С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:
Окончательно получим уравнение:
Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.
Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.
Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:
Значит, решая дробное рациональное уравнение, можно:
1) с помощью тождественных преобразований привести уравнение к виду
2) приравнять числитель к нулю и решить полученное целое уравнение;
3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.
Использование основного свойства пропорции
Если то где
Пример №203
Решите уравнение
Решение:
Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.
Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:
По основному свойству пропорции имеем:
Решим это уравнение:
откуда
Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.
Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:
Таким образом, для решения дробного рационального уравнения можно:
1) найти область допустимых значений (ОДЗ) переменной в уравнении;
2) привести уравнение к виду
3) записать целое уравнение и решить его;
4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.
Метод умножения обеих частей уравнения на общий знаменатель дробей
Пример №204
Решите уравнение
Решение:
Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:
Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение
Умножим обе части уравнения на это выражение:
Получим: а после упрощения: то есть откуда или
Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.
Следовательно, число 12 — единственный корень уравнения. Ответ. 12.
Решая дробное рациональное уравнение, можно:
3) умножить обе части уравнения на этот общий знаменатель;
4) решить полученное целое уравнение;
5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.
Пример №205
Являются ли равносильными уравнения
Решение:
Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.
Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.
Степень с целым показателем
Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:
где — натуральное число,
В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи
Рассмотрим степени числа 3 с показателями — это соответственно
В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:
Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что
Нулевая степень отличного от нуля числа а равна единице, то есть при
Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.
Приходим к следующему определению степени с целым отрицательным показателем:
если натуральное число, то
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Основные определения, примеры системы двух уравнений
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы начнем изучение решения систем из двух уравнений. Вначале дадим определение рационального уравнения, зависящего от двух переменных и его решения. Рассмотрим примеры таких уравнений и их графики. Дадим определение равносильных уравнений и правила равносильных преобразований. Рассмотрим построение графиков для некоторых типовых уравнений.
Далее дадим определение системы двух уравнений и рассмотрим решение систем графическим методом.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»
Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать
Конспект урока математики «Рациональные уравнения»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
Конспект урока по математике
« Рациональные уравнения с двумя переменными.
Тип урока: изучение нового материала.
Тема урока: рациональные уравнения с двумя переменными. Основные понятия.
ввести основные понятия и термины темы;
развивать математическую речь и мышление учащихся.
Оборудование: доска для записей, проектор, экран, презентация.
Организационный момент. (2 – 3 мин.)
Здравствуйте, ребята, присаживайтесь! Сегодня мы с вами рассмотрим новую, достаточно интересную тему, которая станет залогом к успешному усвоению будущего материала. Открываем рабочие тетради, записываем число, сегодня 16 октября, классная работа и тему урока: «Рациональные уравнения с двумя переменными. Основные понятия». (учитель тоже самое записывает на доске)
II . Актуализация знаний. (5 мин.)
Для того, чтобы начать изучение новой темы нам необходимо вспомнить некоторый материал, который вы уже знаете. Итак, вспомним элементарные функции и их графики:
1. График линейной функции
2. Парабола. График квадратичной функции , (а ≠ 0)
Рассмотрим канонический случай:
3. Кубическая парабола
Кубическая парабола задается функцией
4. График гиперболы
Опять же вспоминаем тривиальную гиперболу
III . Изучение нового материала (сопровождается презентацией). (35 мин.)
На предыдущих уроках вы выучили определение рационального уравнения с одной переменной, и сейчас мы говорим, что оно очень схоже с определением рационального уравнения с двумя переменными:
Его записывать не нужно, оно есть в ваших учебниках, еще раз прочитаете его дома и выучите!
А в тетради запишите примеры:
Далее можно сказать, что рациональное уравнение вида h(x; y) = g(x; y) всегда можно преобразовать к виду p(x; y) = 0, где p(x; y) = 0 – рациональное выражение. Для этого нужно переписать выражение так: h ( x ; y ) — g ( x ; y ) = 0, т. е. p ( x ; y ) = 0. последние два равенства запишите себе в тетради!
Следующее определение внимательно слушаем и запоминаем, записывать его не нужно!
А в тетради запишите только примеры:
Записали, двигаемся дальше!
Решим такое уравнение (учащиеся записывают решение в тетради, учитель комментирует каждый шаг решения, параллельно отвечая на вопросы детей):
Следующее определение, это определение равносильности двух уравнение, его вы тоже уже знаете из предыдущих параграфов, поэтому просто смотрим и слушаем:
Теперь давайте вспомним, какие вы знаете равносильные преобразования:
Перенос членов уравнения из одной части в другую с противоположными знаками (примеры на доске, их можете не записывать, кто хочет – запишите);
Умножение или деление обеих частей уравнения на одно и тоже число отличное от нуля или (еще мы знаем) на выражение, всюду отличное от нуля (обратите на это внимание!); (примеры кому нужно запишите).
А какие вы знаете неравносильные преобразования?
1) освобождение от знаменателей, содержащих переменные;
2) возведение обеих частей уравнения в квадрат.
Следующее понятие, которое мы сегодня рассмотрим, записываем – формула расстояния между двумя точками.
(учащиеся обе теоремы записывают себе в тетради)
Этот рисунок перерисовываем в тетради, подписываем оси координат, центр окружности, отмечаем радиус.
Есть ли у вас какие-то вопросы? (если вопросов нет, продолжаем работу)
Рассмотрим примеры, записывайте:
(рис. к П1) (рис. к П2)
Дети постепенно, исходя их выше записанной теоремы, отвечая на вопросы учителя, самостоятельно решают, записывают решение в тетради, рисунки перерисовывают.
Молодцы! А сейчас, перерисуйте себе такую таблицу, она станет хорошим помощником в дальнейшем при решении задач.
Учащиеся аккуратно, каждый в своих тетрадях рисует данную таблицу и заносит в нее данные.
V. Домашнее задание (2 – 3 мин.).
До конца урока осталось 2 минуты, открываем дневники, записываем домашнее задание:
2) стр. 71 вопросы для самопроверки;
3) № 5.1; № 5.3 (а, б); № 5.7.
Начало урока было достаточно доброжелательным, искренним, открытым и организованным. Класс к уроку был подготовлен. Дети в течение всего урока показывали хорошую работоспособность.
Мною сразу были озвучены цели урока. Цели, предложенные детям на урок, соответствовали программным требованиям, содержанию материала.
В начале урока, в качестве активизации познавательной деятельности, детям было предложено вспомнить некоторый материал по ранее изученному материалу, с чем они справились без каких-либо особых затруднений.
Содержание урока соответствовало требованиям образовательного стандарта.
Структура урока предложена выше. На мой взгляд, целям и типу урока она соответствует. Этапы урока были логически связаны, плавно переходили один в другой. На каждом из этапов подводились итоги. Время распределялось на отдельные этапы по-разному в зависимости от того, какой из них являлся основным. На мой взгляд, оно было распределено рационально. Начало и конец урока были организованными. Темп ведения урока был оптимальным.
После первого этапа актуализации знаний шел основной этап урока – объяснение нового материала. Этот этап был главным, поэтому основное время было уделено именно ему.
Изложение нового материала было логичным, грамотным, на высоком теоретическом и одновременно доступном для детей уровне. Главные мысли по теме всегда мной выделялись и записывались учащимися в рабочие тетради.
Изучение нового материала было проведено в форме небольшой лекции с выполнением элементарных практических заданий, для наиболее быстрого и правильного усвоения материала.
Мною была выполнена презентация в программе PowerPoint. Презентация имела в основном вспомогательную функцию.
С целью контроля усвоения знаний на протяжении всего урока учащиеся решали задачи, по результатам чего я могла судить о степени усвоения теоретического материала каждым из детей. После проведения контроля знаний учителем была проведена коррекционная работа. Те вопросы, которые вызвали у учащихся наибольшее затруднение, были рассмотрены еще раз.
После этого был подведен итог урока и ученикам предложено домашнее задание. Домашнее задание было закрепляющего, развивающего характера. На мой взгляд, оно было посильно для всех детей.
Содержание урока было оптимальным, методы обучения – устный, наглядный и практический. Форма работы – беседа. Я использовала приемы активизации познавательной деятельности – это постановка проблемных вопросов, обобщение по планам обобщенного характера.
Учащиеся на уроке были активными. Они показали умение продуктивно работать, делать выводы по увиденному, умение анализировать и обобщать свои знания. Также дети показали наличие навыков самоконтроля, но лишь единицы были неусидчивы, и им уделялось наибольшее внимание с моей стороны.
Класс к уроку был подготовлен.
Я считаю, что цели поставленные в начале урока достигнуты.
📸 Видео
Как решать дробно-рациональные уравнения? | МатематикаСкачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Системы уравнений с двумя переменными - 9 класс алгебраСкачать
Алгебра 9 класс (Урок№23 - Уравнение с двумя переменными и его график.)Скачать
Решение систем уравнений второго порядка. 8 класс.Скачать
Решение систем уравнений методом подстановкиСкачать
Решение системы неравенств с двумя переменными. 9 класс.Скачать
Способы решения систем нелинейных уравнений. 9 класс.Скачать
Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
Системы уравнений с двумя переменными. Алгебра 9 классСкачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать