Решение рациональных уравнений и неравенств 10 класс

Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

«Решение неравенств». 10-й класс

Разделы: Математика

Класс: 10

Цели:

  1. Систематизировать, обобщить, расширить знания и умения учащихся, связанные с применением методов решения рациональных неравенств.
  2. Содействовать развитию математического мышления учащихся,умению комментировать,тренировать память.
  3. Воспитание ответственного отношения к учебному труду,чувства товарищества и взаимопомощи.

Оборудование: интерактивная доска, раздаточный материал(разноуровневые карточки с практическими заданиями).

Структура урока:

  1. Сообщение темы и цели урока (1 мин.)
  2. Проверка домашнего задания (5 мин.)
  3. Систематизация знаний и умений по пройденному материалу (10 мин.)
  4. Инструктирование по выполнению заданий в группах (3 мин.)
  5. Выполнение заданий в группах (15 мин.)
  6. Проверка и обсуждение полученных результатов (8 мин.)
  7. Постановка домашнего задания (2 мин.)
  8. Подведение итогов урока (1 мин.)

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Ход урока

I. Сообщение темы и цели урока.

Сегодня на уроке мы будем решать неравенства методом интервалов и методом замены переменных. Эпиграфом к сегодняшнему уроку будут слова Ньютона:“При изучении наукпримеры не менее поучительны,нежели правила” и слова Ломоносова: “Примеры учат больше,чем теория”.

II. Проверка домашнего задания.

На дом были даны неравенства. Проверьте ваше решение по интерактивной доске.

Решение рациональных уравнений и неравенств 10 класс

Отметим на числовой оси корни числителя и знаменателя.

Решение рациональных уравнений и неравенств 10 класс

Ответ: Решение рациональных уравнений и неравенств 10 классЄ (-3; 1]

Решение рациональных уравнений и неравенств 10 класс

Решение рациональных уравнений и неравенств 10 класс

Решение рациональных уравнений и неравенств 10 класс

Решение рациональных уравнений и неравенств 10 класс

Решение рациональных уравнений и неравенств 10 классРешение рациональных уравнений и неравенств 10 класс

Преобразуем исходное неравенство

Решение рациональных уравнений и неравенств 10 классРешение рациональных уравнений и неравенств 10 класс≥ 0

Решение рациональных уравнений и неравенств 10 класс≥ 0

Решение рациональных уравнений и неравенств 10 класс≥ 0

Решение рациональных уравнений и неравенств 10 класс≥ 0

Применим метод интервалов.

III. Систематизация знаний и умений по пройденному материалу.

Решим методом интервалов следующее неравенство. (Учитель на доске дает образец решения неравенств).

Решение рациональных уравнений и неравенств 10 класс≥ 0

Рассмотрим функцию Решение рациональных уравнений и неравенств 10 класс

1. Область определения функции f(x)находим из системы неравенств

Решение рациональных уравнений и неравенств 10 класс

Область определения: [-4; 3) U (3; 4]

2. Уравнение f (x) ═ 0 имеет корни: -4; 4; 3,5

Ответ: [-4; 3) U [3,5; 4]

Следующее неравенство решим методом замены переменных.

(Решение рациональных уравнений и неравенств 10 класс)² + 7 (Решение рациональных уравнений и неравенств 10 класс) +12 0

  • Решение рациональных уравнений и неравенств 10 класс≤ 0
  • Решение рациональных уравнений и неравенств 10 класс≥ 0
  • V. Выполнение заданий в группах.

    VI. Проверка и обсуждение полученных результатов.

    Проверьте по интерактивной доске решение работы.

    Учащиеся осуществляют самопроверку и самооценку заданий. Получают разъяснения по возникающим при этом вопросам.

    Ответы к рассмотренному варианту.

    Решение рациональных уравнений и неравенств 10 класс

    Воспользуемся методом интервалов, получим :

    Решение рациональных уравнений и неравенств 10 класс≤ 0

    Замена Решение рациональных уравнений и неравенств 10 класс

    Тогда t-1 — Решение рациональных уравнений и неравенств 10 класс≤ 0

    Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Рациональные неравенства и их системы с примерами решения

    Содержание:

    Видео:✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

    ✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин

    Простые рациональные неравенства и их системы

    Рациональные неравенства одной переменной и методы их решения

    Пусть А(х) и В(х) — рациональные выражения. Отношения вида Решение рациональных уравнений и неравенств 10 класс

    Пример:

    Решите неравенство: 2(2х-5)(Зх-8)(5-4х) 0, то мы можем возвести обе части заданного неравенства в квадрат: Решение рациональных уравнений и неравенств 10 классПри Решение рациональных уравнений и неравенств 10 классзаданное неравенства обязательно выполняется:

    Решение рациональных уравнений и неравенств 10 класс

    Замена переменной

    Этот метод аналогичен соответствующему методу замены переменной, использованному при решении иррациональных уравнений.

    Пример:

    Решите неравенство: Решение рациональных уравнений и неравенств 10 класс

    Решение:

    Выпишем неравенство в виде:Решение рациональных уравнений и неравенств 10 класс

    Введем новую переменную: Решение рациональных уравнений и неравенств 10 классВ этом случае

    Решение рациональных уравнений и неравенств 10 класс

    Значит: Решение рациональных уравнений и неравенств 10 класс

    Решение рациональных уравнений и неравенств 10 класс

    Пример:

    Решите неравенство: Решение рациональных уравнений и неравенств 10 класс

    Решение:

    Введем новую переменную: Решение рациональных уравнений и неравенств 10 класс

    Отсюда, Решение рациональных уравнений и неравенств 10 класси получим рациональное неравенство от переменной t:

    Решение рациональных уравнений и неравенств 10 класс

    Из последнего неравенства найдем х:

    Решение рациональных уравнений и неравенств 10 класс

    Решение рациональных уравнений и неравенств 10 класс

    Рекомендую подробно изучить предметы:
    1. Математика
    2. Алгебра
    3. Линейная алгебра
    4. Векторная алгебра
    5. Высшая математика
    6. Дискретная математика
    7. Математический анализ
    8. Математическая логика
    Ещё лекции с примерами решения и объяснением:
    • Геометрические задачи и методы их решения
    • Прямые и плоскости в пространстве
    • Интеграл и его применение
    • Первообразная и интегра
    • Перпендикулярность в пространстве
    • Векторы и координаты в пространстве
    • Множества
    • Рациональные уравнения

    При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

    Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

    Сайт пишется, поддерживается и управляется коллективом преподавателей

    Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

    Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

    Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

    Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

    Решение целых и дробно рациональных неравенств

    Продолжаем разбирать способы решения неравенств, имеющих в составе одну переменную. Мы уже изучили линейные и квадратные неравенства, которые представляют из себя частные случаи рациональных неравенств. В этой статье мы уточним, неравенства какого типа относятся к рациональным, расскажем, на какие виды они делятся (целые и дробные). После этого покажем, как правильно их решать, приведем нужные алгоритмы и разберем конкретные задачи.

    Видео:решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 классСкачать

    решение УРАВНЕНИЙ решение НЕРАВЕНСТВ 10 11 класс

    Понятие рациональных равенств

    Когда в школе изучают тему решения неравенств, то сразу берут рациональные неравенства. На них приобретаются и оттачиваются навыки работы с этим видом выражений. Сформулируем определение данного понятия:

    Рациональное неравенство представляет из себя такое неравенство с переменными, которое содержит в обоих частях рациональные выражения.

    Отметим, что определение никак не затрагивает вопрос количества переменных, значит, их может быть сколь угодно много. Следовательно, возможны рациональные неравенства с 1 , 2 , 3 и более переменными. Чаще всего приходится иметь дело с выражениями, содержащими всего одну переменную, реже две, а неравенства с большим количеством переменных обычно в рамках школьного курса не рассматривают вовсе.

    Таким образом, мы можем узнать рациональное неравенство, посмотрев на его запись. И с правой, и с левой стороны у него должны быть расположены рациональные выражения. Приведем примеры:

    x > 4 x 3 + 2 · y ≤ 5 · ( y − 1 ) · ( x 2 + 1 ) 2 · x x — 1 ≥ 1 + 1 1 + 3 x + 3 · x 2

    А вот неравенство вида 5 + x + 1 x · y · z не относится к рациональным, поскольку слева у него есть переменная под знаком корня.

    Все рациональные неравенства делятся на целые и дробные.

    Целое рациональное равенство состоит из целых рациональных выражений (в обеих частях).

    Дробно рациональное равенство – это такое равенство, которое содержит дробное выражение в одной или обеих своих частях.

    Например, неравенства вида 1 + x — 1 1 3 2 2 + 2 3 + 2 11 — 2 · 1 3 · x — 1 > 4 — x 4 и 1 — 2 3 5 — y > 1 x 2 — y 2 являются дробно рациональными, а 0 , 5 · x ≤ 3 · ( 2 − 5 · y ) и 1 : x + 3 > 0 – целыми.

    Мы разобрали, что из себя представляют рациональные неравенства, и выделили их основные типы. Можем переходить дальше, к обзору способов их решения.

    Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

    Как решать дробно-рациональные уравнения? | Математика

    Как решать целые неравенства

    Допустим, что нам требуется найти решения целого рационального неравенства r ( x ) s ( x ) , которое включает в себя только одну переменную x . При этом r ( x ) и s ( x ) представляют собой любые целые рациональные числа или выражения, а знак неравенства может отличаться. Чтобы решить это задание, нам нужно преобразовать его и получить равносильное равенство.

    Начнем с перенесения выражения из правой части в левую. Получим следующее:

    вида r ( x ) − s ( x ) 0 ( ≤ , > , ≥ )

    Мы знаем, что r ( x ) − s ( x ) будет целым значением, а любое целое выражение допустимо преобразовать в многочлен. Преобразуем r ( x ) − s ( x ) в h ( x ) . Это выражение будет тождественно равным многочленом. Учитывая, что у r ( x ) − s ( x ) и h ( x ) область допустимых значений x одинакова, мы можем перейти к неравенствам h ( x ) 0 ( ≤ , > , ≥ ) , которое будет равносильно исходному.

    Зачастую такого простого преобразования будет достаточно для решения неравенства, поскольку в итоге может получиться линейное или квадратное неравенство, значение которого вычислить несложно. Разберем такие задачи.

    Условие: решите целое рациональное неравенство x · ( x + 3 ) + 2 · x ≤ ( x + 1 ) 2 + 1 .

    Решение

    Начнем с переноса выражения из правой части в левую с противоположным знаком.

    x · ( x + 3 ) + 2 · x − ( x + 1 ) 2 − 1 ≤ 0

    Теперь, когда мы выполнили все действия с многочленами слева, можно переходить к линейному неравенству 3 · x − 2 ≤ 0 , равносильному тому, что было дано в условии. Решить его несложно:

    Ответ: x ≤ 2 3 .

    Условие: найдите решение неравенства ( x 2 + 1 ) 2 − 3 · x 2 > ( x 2 − x ) · ( x 2 + x ) .

    Решение

    Переносим выражение из левой части в правую и выполняем дальнейшие преобразования с помощью формул сокращенного умножения.

    ( x 2 + 1 ) 2 − 3 · x 2 − ( x 2 − x ) · ( x 2 + x ) > 0 x 4 + 2 · x 2 + 1 − 3 · x 2 − x 4 + x 2 > 0 1 > 0

    В итоге наших преобразований мы получили неравенство, которое будет верным при любых значениях x , следовательно, решением исходного неравенства может быть любое действительное число.

    Ответ: любое действительно число.

    Условие: решите неравенство x + 6 + 2 · x 3 − 2 · x · ( x 2 + x − 5 ) > 0 .

    Решение

    Из правой части мы ничего переносить не будем, поскольку там 0 . Начнем сразу с преобразования левой части в многочлен:

    x + 6 + 2 · x 3 − 2 · x 3 − 2 · x 2 + 10 · x > 0 − 2 · x 2 + 11 · x + 6 > 0 .

    Мы вывели квадратное неравенство, равносильное исходному, которое легко решить несколькими методами. Применим графический способ.

    Начнем с вычисления корней квадратного трехчлена − 2 · x 2 + 11 · x + 6 :

    D = 11 2 — 4 · ( — 2 ) · 6 = 169 x 1 = — 11 + 169 2 · — 2 , x 2 = — 11 — 169 2 · — 2 x 1 = — 0 , 5 , x 2 = 6

    Теперь на схеме отметим все необходимые нули. Поскольку старший коэффициент меньше нуля, ветви параболы на графике будут смотреть вниз.

    Решение рациональных уравнений и неравенств 10 класс

    Нам будет нужна область параболы, расположенная над осью абсцисс, поскольку в неравенстве у нас стоит знак > . Нужный интервал равен ( − 0 , 5 , 6 ) , следовательно, эта область значений и будет нужным нам решением.

    Ответ: ( − 0 , 5 , 6 ) .

    Бывают и более сложные случаи, когда слева получается многочлен третьей или более высокой степени. Чтобы решить такое неравенство, рекомендуется использовать метод интервалов. Сначала мы вычисляем все корни многочлена h ( x ) , что чаще всего делается с помощью разложения многочлена на множители.

    Условие: вычислите ( x 2 + 2 ) · ( x + 4 ) 14 − 9 · x .

    Решение

    Начнем, как всегда, с переноса выражения в левую часть, после чего нужно будет выполнить раскрытие скобок и приведение подобных слагаемых.

    ( x 2 + 2 ) · ( x + 4 ) − 14 + 9 · x 0 x 3 + 4 · x 2 + 2 · x + 8 − 14 + 9 · x 0 x 3 + 4 · x 2 + 11 · x − 6 0

    В итоге преобразований у нас получилось равносильное исходному равенство, слева у которого стоит многочлен третьей степени. Применим метод интервалов для его решения.

    Сначала вычисляем корни многочлена, для чего нам надо решить кубическое уравнение x 3 + 4 · x 2 + 11 · x − 6 = 0 . Имеет ли оно рациональные корни? Они могут быть лишь в числе делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 3 , ± 6 . Подставим их по очереди в исходное уравнение и выясним, что числа 1 , 2 и 3 будут его корнями.

    Значит, многочлен x 3 + 4 · x 2 + 11 · x − 6 может быть описан в виде произведения ( x − 1 ) · ( x − 2 ) · ( x − 3 ) , и неравенство x 3 + 4 · x 2 + 11 · x − 6 0 может быть представлено как ( x − 1 ) · ( x − 2 ) · ( x − 3 ) 0 . С неравенством такого вида нам потом будет легче определить знаки на промежутках.

    Далее выполняем оставшиеся шаги интервального метода: рисуем числовую прямую и точки на ней с координатами 1 , 2 , 3 . Они разбивают прямую на 4 промежутка, в которых нужно определить знаки. Заштрихуем промежутки с минусом, поскольку исходное неравенство имеет знак .

    Решение рациональных уравнений и неравенств 10 класс

    Нам осталось только записать готовый ответ: ( − ∞ , 1 ) ∪ ( 2 , 3 ) .

    Ответ: ( − ∞ , 1 ) ∪ ( 2 , 3 ) .

    В некоторых случаях выполнять переход от неравенства r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) к h ( x ) 0 ( ≤ , > , ≥ ) , где h ( x ) – многочлен в степени выше 2 , нецелесообразно. Это распространяется на те случаи, когда представить r ( x ) − s ( x ) как произведение линейных двучленов и квадратных трехчленов проще, чем разложить h ( x ) на отдельные множители. Разберем такую задачу.

    Условие: найдите решение неравенства ( x 2 − 2 · x − 1 ) · ( x 2 − 19 ) ≥ 2 · x · ( x 2 − 2 · x − 1 ) .

    Решение

    Данное неравенство относится к целым. Если мы перенесем выражение из правой части влево, раскроем скобки и выполним приведение слагаемых, то получим x 4 − 4 · x 3 − 16 · x 2 + 40 · x + 19 ≥ 0 .

    Решить такое неравенство непросто, поскольку придется искать корни многочлена четвертой степени. Оно не имеет ни одного рационального корня (так, 1 , − 1 , 19 или − 19 не подходят), а искать другие корни сложно. Значит, воспользоваться этим способом мы не можем.

    Но есть и другие способы решения. Если мы перенесем выражения из правой части исходного неравенства в левую, то сможем выполнить вынесение за скобки общего множителя x 2 − 2 · x − 1:

    ( x 2 − 2 · x − 1 ) · ( x 2 − 19 ) − 2 · x · ( x 2 − 2 · x − 1 ) ≥ 0 ( x 2 − 2 · x − 1 ) · ( x 2 − 2 · x − 19 ) ≥ 0 .

    Мы получили неравенство, равносильное исходному, и его решение даст нам искомый ответ. Найдем нули выражения в левой части, для чего решим квадратные уравнения x 2 − 2 · x − 1 = 0 и x 2 − 2 · x − 19 = 0 . Их корни – 1 ± 2 , 1 ± 2 5 . Переходим к равенству x — 1 + 2 · x — 1 — 2 · x — 1 + 2 5 · x — 1 — 2 5 ≥ 0 , которое можно решить методом интервалов:

    Решение рациональных уравнений и неравенств 10 класс

    Согласно рисунку, ответом будет — ∞ , 1 — 2 5 ∪ 1 — 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

    Ответ: — ∞ , 1 — 2 5 ∪ 1 — 2 5 , 1 + 2 ∪ 1 + 2 5 , + ∞ .

    Добавим, что иногда нет возможности найти все корни многочлена h ( x ) , следовательно, мы не можем представить его в виде произведения линейных двучленов и квадратных трехчленов. Тогда решить неравенство вида h ( x ) 0 ( ≤ , > , ≥ ) мы не можем, значит, решить исходное рациональное неравенство тоже нельзя.

    Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

    Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

    Как решать дробно рациональные неравенства

    Допустим, надо решить дробно рационально неравенств вида r ( x ) s ( x ) ( ≤ , > , ≥ ) , где r ( x ) и s ( x ) являются рациональными выражениями, x – переменной. Хотя бы одно из указанных выражений будет дробным. Алгоритм решения в этом случае будет таким:

    1. Определяем область допустимых значений переменной x .
    2. Переносим выражение из правой части неравенства налево, а получившееся выражение r ( x ) − s ( x ) представляем в виде дроби. При этом где p ( x ) и q ( x ) будут целыми выражениями, которые являются произведениями линейных двучленов, неразложимых квадратных трехчленов, а также степеней с натуральным показателем.
    3. Далее решаем полученное неравенство методом интервалов.
    4. Последним шагом является исключение точек, полученных в ходе решения, из области допустимых значений переменной x , которую мы определили в начале.

    Это и есть алгоритм решения дробно рационального неравенства. Большая часть его понятна, небольшие пояснения требуются только для п. 2 . Мы перенесли выражение из правой части налево и получили r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) , а как потом привести его к виду p ( x ) q ( x ) 0 ( ≤ , > , ≥ ) ?

    Сначала определим, всегда ли можно выполнить данное преобразование. Теоретически, такая возможность имеется всегда, поскольку в рациональную дробь можно преобразовать любое рациональное выражение. Здесь же у нас есть дробь с многочленами в числителе и знаменателе. Вспомним основную теорему алгебры и теорему Безу и определим, что любой многочлен n -ной степени, содержащий одну переменную, может быть преобразован в произведение линейных двучленов. Следовательно, в теории мы всегда можем преобразовать выражение таким образом.

    На практике разложение многочленов на множители зачастую оказывается довольно трудной задачей, особенно если степень выше 4 . Если мы не сможем выполнить разложение, то не сможем и решить данное неравенство, однако в рамках школьного курса такие проблемы обычно не изучаются.

    Далее нам надо решить, будет ли полученное неравенство p ( x ) q ( x ) 0 ( ≤ , > , ≥ ) равносильным по отношению к r ( x ) − s ( x ) 0 ( ≤ , > , ≥ ) и к исходному. Есть вероятность, что оно может оказаться и неравносильным.

    Равносильность неравенства будет обеспечена тогда, когда область допустимых значений p ( x ) q ( x ) совпадет с областью значений выражения r ( x ) − s ( x ) . Тогда последний пункт инструкции по решению дробно рациональных неравенств выполнять не нужно.

    Но область значений для p ( x ) q ( x ) может оказаться шире, чем у r ( x ) − s ( x ) , например, за счет сокращения дробей. Примером может быть переход от x · x — 1 3 x — 1 2 · x + 3 к x · x — 1 x + 3 . Либо это может происходить при приведении подобных слагаемых, например, здесь:

    x + 5 x — 2 2 · x — x + 5 x — 2 2 · x + 1 x + 3 к 1 x + 3

    Для таких случаев и добавлен последний шаг алгоритма. Выполнив его, вы избавитесь от посторонних значений переменной, которые возникают из-за расширения области допустимых значений. Возьмем несколько примеров, чтобы было более понятно, о чем идет речь.

    Условие: найдите решения рационального равенства x x + 1 · x — 3 + 4 x — 3 2 ≥ — 3 · x x — 3 2 · x + 1 .

    Решение

    Действуем по алгоритму, указанному выше. Сначала определяем область допустимых значений. В данном случае она определяется системой неравенств x + 1 · x — 3 ≠ 0 x — 3 2 ≠ 0 x — 3 2 · ( x + 1 ) ≠ 0 , решением которой будет множество ( − ∞ , − 1 ) ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) .

    Далее нам надо сделать так, чтобы в правой части неравенства получился 0 . Выполняем перенос выражения из правой части влево с противоположным знаком и получаем неравенство, равносильное исходному:

    x x + 1 · x — 3 + 4 ( x — 3 ) 2 + 3 · x ( x — 3 ) 2 · ( x + 1 ) ≥ 0

    После этого нам нужно преобразовать его так, чтобы было удобно применить метод интервалов. Первым делом приводим алгебраические дроби к наименьшему общему знаменателю ( x − 3 ) 2 · ( x + 1 ) :

    x x + 1 · x — 3 + 4 ( x — 3 ) 2 + 3 · x ( x — 3 ) 2 · ( x + 1 ) = = x · x — 3 + 4 · x + 1 + 3 · x x — 3 2 · x + 1 = x 2 + 4 · x + 4 ( x — 3 ) 2 · ( x + 1 )

    Сворачиваем выражение в числителе, применяя формулу квадрата суммы:

    x 2 + 4 · x + 4 x — 3 2 · x + 1 = x + 2 2 x — 3 2 · x + 1

    Областью допустимых значений получившегося выражения является ( − ∞ , − 1 ) ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) . Мы видим, что она аналогична той, что была определена для исходного равенства. Заключаем, что неравенство x + 2 2 x — 3 2 · x + 1 ≥ 0 является равносильным исходному, значит, последний шаг алгоритма нам не нужен.

    Используем метод интервалов:

    Решение рациональных уравнений и неравенств 10 класс

    Видим решение ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) , которое и будет решением исходного рационального неравенства x x + 1 · x — 3 + 4 x — 3 2 ≥ — 3 · x ( x — 3 ) 2 · ( x + 1 ) .

    Ответ: ∪ ( − 1 , 3 ) ∪ ( 3 , + ∞ ) .

    Условие: вычислите решение x + 3 x — 1 — 3 x x + 2 + 2 x — 1 > 1 x + 1 + 2 · x + 2 x 2 — 1 .

    Решение

    Определяем область допустимых значений. В случае с этим неравенством она будет равна всем действительным числам, кроме − 2 , − 1 , 0 и 1 .

    Переносим выражения из правой части в левую:

    x + 3 x — 1 — 3 x x + 2 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 > 0

    Далее выполняем преобразование левой части. Сначала преобразуем первую дробь:

    x + 3 x — 1 — 3 x x + 2 = x + 3 — x — 3 x x + 2 = 0 x x + 2 = 0 x + 2 = 0

    Учитывая получившийся результат, запишем:

    x + 3 x — 1 — 3 x x + 2 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 0 + 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 2 x — 1 — 1 x + 1 — 2 · x + 2 x 2 — 1 = = 2 x — 1 — 1 x + 1 — 2 · x + 2 ( x + 1 ) · x — 1 = = — x — 1 ( x + 1 ) · x — 1 = — x + 1 ( x + 1 ) · x — 1 = — 1 x — 1

    Для выражения — 1 x — 1 областью допустимых значений будет множество всех действительных чисел, за исключением единицы. Мы видим, что область значений расширилась: в нее были добавлены − 2 , − 1 и 0 . Значит, нам нужно выполнить последний шаг алгоритма.

    Поскольку мы пришли к неравенству — 1 x — 1 > 0 , можем записать равносильное ему 1 x — 1 0 . С помощью метода интервалов вычислим решение и получим ( − ∞ , 1 ) .

    Исключаем точки, которые не входят в область допустимых значений исходного равенства. Нам надо исключить из ( − ∞ , 1 ) числа − 2 , − 1 и 0 . Таким образом, решением рационального неравенства x + 3 x — 1 — 3 x x + 2 + 2 x — 1 > 1 x + 1 + 2 · x + 2 x 2 — 1 будут значения ( − ∞ , − 2 ) ∪ ( − 2 , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) .

    Ответ: ( − ∞ , − 2 ) ∪ ( − 2 , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) .

    В заключение приведем еще один пример задачи, в котором окончательный ответ зависит от области допустимых значений.

    Условие: найдите решение неравенства 5 + 3 x 2 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≥ 0 .

    Решение

    Область допустимых значений неравенства, заданного в условии, определяет система x 2 ≠ 0 x 2 — x + 1 ≠ 0 x — 1 ≠ 0 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≠ 0 .

    Решений у этой системы нет, поскольку

    x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 = = ( x + 1 ) · x 2 — x + 1 x 2 — x + 1 — ( x — 1 ) · x + 1 x — 1 = = x + 1 — ( x + 1 ) = 0

    Значит, исходное равенство 5 + 3 x 2 x 3 + 1 x 2 — x + 1 — x 2 — 1 x — 1 ≥ 0 не имеет решения, поскольку нет таких значений переменной, при которой оно имело бы смысл.

    💡 Видео

    Профильный ЕГЭ 2023. Задача 14. Неравенства. Метод интервалов. 10 классСкачать

    Профильный ЕГЭ 2023. Задача 14. Неравенства. Метод интервалов. 10 класс

    Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать

    Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Решение неравенства методом интерваловСкачать

    Решение неравенства методом интервалов

    СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

    СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

    Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

    Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

    Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

    Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |

    Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)Скачать

    ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)

    Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Этот АЛГОРИТМ позволит решать неравенства за 1 минуту — Дробно-Рациональные НеравенстваСкачать

    Этот АЛГОРИТМ позволит решать неравенства за 1 минуту — Дробно-Рациональные Неравенства

    Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать

    Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnline
    Поделиться или сохранить к себе: