Решение простейшего уравнения ctgx a

Арккотангенс и решение уравнения ctg x=a (продолжение)
Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Решение простейшего уравнения ctgx a

На этом уроке мы продолжим изучение арккотангенса и решение уравнений вида ctg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение ctgt = a в общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы записи ответа. В конце урока решим несколько типовых уравнений и задач с арккотангенсом.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Решение простейшего уравнения ctgx a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Решение простейшего уравнения ctgx a

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Решение простейшего уравнения ctgx a

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Решение простейшего уравнения ctgx a

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Решение простейшего уравнения ctgx a

Примеры решения задач

Решение простейшего уравнения ctgx a

Замечание. Ответ к задаче 1 часто записывают в виде:

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

19.3. Уравнения tg x = a и ctg x = a

Решение простейшего уравнения ctgx a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Решение простейшего уравнения ctgx aфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Решение простейшего уравнения ctgx a

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

таким образом, уравнение ctg x = 0 имеет корни

Решение простейшего уравнения ctgx a

Примеры решения задач

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Решение простейшего уравнения ctgx a

Решение простейшего уравнения ctgx a

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Простейшие тригонометрические уравнения с тангенсом и котангенсом

Чтобы уверенно решать простейшие уравнения с тангенсом или котангенсом нужно знать значения стандартных точек на круге и стандартные значения на осях тангенсов и котангенсов (если в этом материале есть пробелы, читайте « Как запомнить тригонометрический круг »).

Видео:Решение простейших тригонометрических уравнений tgx=a и ctgx=aСкачать

Решение простейших тригонометрических уравнений tgx=a и ctgx=a

Алгоритм решения простейших уравнений с тангенсом

Давайте с вами рассмотрим типичное уравнение, например, (tg⁡x=sqrt).

Пример. Решить уравнение (tg⁡x=sqrt).

Чего от нас здесь хотят? Чтобы мы написали все такие значения угла в Пи, для которых тангенс равен корню из трех. Причем написать надо именно все такие углы. Давайте нарисуем тригонометрический круг и ось тангенсов…

Решение простейшего уравнения ctgx a

…и обозначим то место на оси, куда мы должны попасть в итоге.

Решение простейшего уравнения ctgx a

Теперь найдем через какие точки на окружности мы должны идти, чтобы попасть в этот самый корень из трех –проведем прямую через начало координат и найденную точку на оси тангенсов.

Решение простейшего уравнения ctgx a

Точки найдены. Давайте подпишем значение одной из них…

Решение простейшего уравнения ctgx a

…и запишем окончательный ответ – все возможные варианты значений в Пи, находящиеся в отмеченных точках: (x=frac+πn), (n∈Z).

Решение простейшего уравнения ctgx a

Замечание. Вы, наверно, обратили внимание, что в отличие от уравнений с синусом и косинусом , здесь записывается только одна серия корней, причем в формуле добавляется (πn), а не (2πn). Дело в том, что в любом уравнении с тангенсом решением получаются две точки на окружности, которые находятся друг от друга на расстоянии (π). Благодаря этому значение обеих точек можно записать одной формулой в виде (x=t_0+πn), (n∈Z).

Пример. Решить уравнение (tg⁡x=-1).

Решение простейшего уравнения ctgx a

Итак, окончательный алгоритм решения подобных задач выглядит следующим образом:

Шаг 1. Построить окружность, оси синусов и косинусов, а также ось тангенсов.

Шаг 2. Отметить на оси тангенсов значение, которому тангенс должен быть равен.

Шаг 3. Соединить прямой линией центр окружности и отмеченную точку на оси тангенсов.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z) (подробнее о формуле в видео), где (t_0) – как раз то значение, которые вы нашли в шаге 4.

Специально для вас мы сделали удобную табличку со всеми шагами алгоритма и разными примерами к нему. Пользуйтесь на здоровье! Можете даже распечатать и повесить на стенку, чтоб больше никогда не ошибаться в этих уравнениях.

Решение простейшего уравнения ctgx a

Видео:Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)Скачать

Алгебра 10 класс (Урок№43 - Уравнение tg x=a.)

Алгоритм решения простейших уравнений с котангенсом

Сразу скажу, что алгоритм решения уравнений с котангенсом почти такой же, как и с тангенсом.

Шаг 1. Вопрос у нас практически тот же – из каких точек круга можно попасть в (frac<sqrt>) на оси котангенсов?
Строим круг, проводим нужные оси.

Решение простейшего уравнения ctgx a

Теперь отмечаем на оси котангенсов значение, которому котангенс должен быть равен…

Решение простейшего уравнения ctgx a

…и соединяем центр окружности и точку на оси котангенсов прямой линией.

Решение простейшего уравнения ctgx a

По сути точки найдены. Осталось записать их все. Вновь определяем значение в одной из них…

Решение простейшего уравнения ctgx a

…и записываем окончательный ответ по формуле (x=t_0+πn), (n∈Z), потому что у котангенса период такой же как у тангенса: (πn).

Решение простейшего уравнения ctgx a

Кстати, вы обратили внимание, что ответы в задачах совпали? Здесь нет ошибки, ведь для любой точки круга, тангенс которой равен (sqrt), котангенс будет (frac<sqrt>).

Разберем еще пример, а потом подведем итог.

Пример. Решить уравнение (ctg⁡x=-1). Здесь подробно расписывать не буду, так как логика полностью аналогична вышеизложенной.

Решение простейшего уравнения ctgx a

Итак, алгоритм решения простейших тригонометрических уравнений с котангенсом:

Шаг 1. Построить окружность и оси синусов и косинусов, а также ось котангенсов.

Шаг 2. Отметить на оси котангенсов значение, которому котангенс должен быть равен.

Шаг 3. Соединить центр окружности и точку на оси котангенсов прямой линией.

Шаг 4. Найти значение одной из точек на круге.

Шаг 5. Записать ответ используя формулу (x=t_0+πn), (n∈Z), где (t_0) – как раз то значение, которые вы нашли в шаге 4. И табличка в награду всем дочитавшим до этого места.

Решение простейшего уравнения ctgx a

Примечание. Возможно, вы обратили внимание, что при решении примеров 2 и 3 в обеих табличках мы использовали функции (arctg) и (arcctg). Если вы не знаете, что это – читайте эту статью.

🎥 Видео

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

Простейшее тригонометрическое уравнение сtgx=aСкачать

Простейшее тригонометрическое уравнение сtgx=a

Решение простейших тригонометрических уравнений вида tgx=a и ctgx=a. Подготовка к ГВЭ11+ЕГЭ 2021 #83Скачать

Решение простейших тригонометрических уравнений вида tgx=a и ctgx=a. Подготовка к ГВЭ11+ЕГЭ 2021 #83

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

Решение простейших тригонометрических уравнений tgx=a, ctgx=aСкачать

Решение простейших тригонометрических уравнений tgx=a, ctgx=a

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Подготовка к ЕГЭ #83. Решение простейших тригонометрических уравнений вида tgx=a и ctgx=aСкачать

Подготовка к ЕГЭ #83. Решение простейших тригонометрических уравнений вида tgx=a и ctgx=a

Решение уравнений вида tgx=a и ctgx=aСкачать

Решение уравнений вида tgx=a и ctgx=a

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

Простейшие тригонометрические уравненияСкачать

Простейшие тригонометрические уравнения

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Простейшие тригонометрические уравнения. y=sinx. 2 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 2 часть. 10 класс.

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства
Поделиться или сохранить к себе: