Прежде чем рассказать о вычислении пределов с неопределенностью, хочется верить, что у вас уже есть понимание того, что такое предел и как вычислить элементарные пределы. Если такого понимания нет, то сначала прочитайте статью «Пределы. Понятие пределов. Вычисление пределов».
Теперь перейдем к рассмотрению пределов с неопределенностью.
Существует группа пределов, когда x , а функция представляет собой дробь, подставив в которую значение х = получим неопределенность вида .
Необходимо вычислить предел
Воспользуемся нашим правилом №1 и подставим в функцию. Как видно мы получаем неопределенность .
В числителе находим х в старшей степени, которая в нашем случае = 2:
То же самое проделаем со знаменателем:
Здесь также старшая степень = 2.
Далее надо из двух найденных степеней выбрать самую старшую. В нашем случае степень числителя и знаменателя совпадают и =2.
Итак, для раскрытия неопределенности нам потребуется разделить числитель и знаменатель на х в старшей степени, т.е. на x 2 :
Существуют также пределы с другой неопределенностью — вида . Отличие от предыдущего случая лишь в том, что х стремится уже не к , а к конечному числу.
Необходимо вычислить предел .
Снова воспользуемся правилом №1 и подставим в место х число -1:
Мы получили неопределенность , для раскрытия которой необходимо разложить числитель и знаменатель на множители, для чего в свою очередь обычно решается квадратное уравнение или используются формулы сокращенного умножения.
В нашем случае решаем уравнение:
.
Если корень не извлекается целый вероятней всего D вычислен неправильно.
Теперь находим корни уравнения:
В знаменателе у нас х + 1, что итак является простейшим множителем.
Тогда наш предел примет вид:
х + 1 красиво сокращается:
Теперь подставим вместо х значение -1 в функцию и получаем:
Рассмотрим основные положения, применяемые при решении различного рода задач с пределами:
- Предел суммы 2-х или более функций равен сумме пределов этих функций:
Предел постоянной величины равен самой постоянной величине:
За знак предела можно выносить постоянный коэффициент:
Предел произведения 2-х и более функций равен произведению пределов этих функций ( последние должны существовать):
Предел отношения 2-х функций равен отношению пределов этих функций (в том случае, если предел знаменателя 0:
Степень функции, находящейся под знаком предела, применима к самому пределу этой функции (степень должна быть действительным числом):
На этом с вычислением пределов с неопределенностью всё. Еще в статье «Замечательные пределы: Первый и второй замечательный предел» мы отдельно рассматриваем интересную группу пределов. Статья вставит еще один блок для решения большинства пределов, встречающихся не просторах обучения.
- Решение пределов с дробями из многочленов
- Методы решения пределов с дробями из многочленов
- Примеры решений
- Пределы при x стремящемся к бесконечности
- Пример 1
- Пример 2
- Пример 3
- Пределы в конечной точке
- Пример 4. Непрерывные функции
- Пример 5. Бесконечно большие функции
- Неопределенность вида 0/0
- Пример 8. Неопределенность вида ∞±∞
- Пределы с иррациональностями. Первая часть.
- Раскрытие неопределенности $frac$.
- 🎦 Видео
Видео:Вычисление пределов #11Скачать
Решение пределов с дробями из многочленов
Здесь мы рассмотрим примеры и методы решения пределов функций, составленных из отношений многочленов. Это дроби из многочленов и разности дробей. Обзор и обоснование методов решения таких пределов изложены в разделе Раскрытие неопределенностей с дробями.
Видео:Вычислить предел. Пример 1.Скачать
Методы решения пределов с дробями из многочленов
1. Рассмотрим предел функции, которая является отношением многочленов:
, где
(1) ,
и – многочлены степеней m и n , соответственно:
;
.
1.1. Пусть есть бесконечность:
.
Тогда возникает неопределенность вида . Для ее раскрытия, нужно числитель и знаменатель дроби разделить на x s , где s – наибольшее из чисел m и n . Примеры ⇓
1.2. Пусть есть конечное число. Найдем значение знаменателя дроби, подставив :
.
1.2.1. Если , то неопределенности нет. Функция определена и непрерывна при . Значение предела равно значению функции в точке :
. Пример ⇓
1.2.2. Если знаменатель равен нулю, а числитель нет: ,
то неопределенность также отсутствует. Предел равен бесконечности:
. Пример ⇓
1.2.3. Пусть теперь и числитель, и знаменатель равны нулю:
.
В этом случае у нас возникает неопределенность вида 0/0 . Для ее раскрытия, делим числитель и знаменатель на . Деление можно выполнять либо уголком, либо в уме, приравнивая коэффициенты при одинаковых степенях переменной x . Примеры ⇓
2. Теперь рассмотрим пределы от суммы или разности отношений многочленов. В этом случае, может возникнуть неопределенность вида бесконечность плюс-минус бесконечность: . Для ее раскрытия, нужно привести дроби к общему знаменателю. В результате получим предел от функции вида (1), методы решения которого мы уже рассмотрели. Пример ⇓
Видео:29. Вычисление пределов функции №4. Неопределенность 0/0 с корнями.Скачать
Примеры решений
Все примеры Далее мы приводим подробные решения пределов дробей из многочленов.
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
Пределы при x стремящемся к бесконечности
Пример 1
Все примеры ⇑ Найти предел отношения многочленов при x стремящемся к бесконечности:
.
Разделим числитель и знаменатель дроби на . При имеем:
.
На основании свойств степенной функции, при . Применяя арифметические свойства предела функции, находим:
.
Пример 2
Все примеры ⇑ Найти предел функции, которая является отношением многочленов:
.
Разделим числитель и знаменатель дроби на . При имеем:
.
Применяя арифметические свойства предела функции, находим:
.
Пример 3
Разделим числитель и знаменатель дроби на . При имеем:
.
Применим арифметические свойства предела функции к числителю и знаменателю:
;
.
Применим свойства бесконечно малых и бесконечно больших функций:
.
Мы получили правильную величину предела: . Но бесконечно удаленная точка может включать в себя два частных случая: и . Как , так и являются . Если и, для достаточно больших |x| , , то . Если, для достаточно больших |x| , то .
Выясним, имеет ли наш предел определенный знак? Для этого преобразуем знаменатель и переведем бесконечно большую часть в числитель:
;
.
Поскольку , то . Тогда
.
Пределы в конечной точке
Пример 4. Непрерывные функции
Все примеры ⇑ Найти пределы функции
a) при ; б) при .
а) Найдем значение знаменателя в точке :
.
Поскольку знаменатель не обращается в нуль, то функция непрерывна в точке . Поэтому предел функции равен ее значению при :
.
б) Найдем значение знаменателя в точке :
.
Здесь также знаменатель не обращается в нуль. Функция непрерывна. Ее предел при равен значению при :
.
Пример 5. Бесконечно большие функции
Все примеры ⇑ Задана функция в виде отношения многочленов:
.
Найти односторонние пределы:
а) ; б) .
Найдем значение знаменателя дроби в точке :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной при . Выясним, есть ли неопределенность вида 0/0 ? Для этого найдем значение числителя в этой точке:
.
Числитель не равен нулю. Поэтому неопределенности вида 0/0 нет. Предел при равен бесконечности:
.
Но нам нужно найти односторонние пределы. Для этого выделим из многочлена в знаменателе множитель . То есть представим знаменатель в следующем виде:
.
Раскрываем скобки:
.
Сравнивая левую и правую части, находим:
.
Отсюда ,
;
.
Функция непрерывна в точке , поскольку знаменатель дроби не обращается в нуль. При , имеем:
.
Тогда
;
при .
а) Подставим :
.
б) Подставим :
.
Примечание.
Если бы знаменатель дроби не равнялся нулю при , то функция была бы непрерывной в точке . В этом случае, пределы слева и справа были бы равны:
.
Неопределенность вида 0/0
Пример 6
Найдем значение знаменателя дроби при :
.
Знаменатель дроби равен нулю. Поэтому функция не определена и, следовательно, не является непрерывной в точке .
Найдем значение числителя при :
.
Числитель дроби также равен нулю. Мы имеем неопределенность вида 0/0 . Для ее раскрытия, выделим в многочленах множитель .
Ищем разложение знаменателя в виде:
.
Раскрываем скобки и группируем члены с одинаковыми степенями x :
.
Сравнивая левую и правую части, находим:
.
Отсюда ,
.
На практике, нет необходимости выписывать неопределенные коэффициенты разложения, а затем решать систему уравнений. Подобные вычисления легко проводить в уме. Для числителя имеем:
.
Пример 7
Все примеры ⇑ Найти предел отношения многочленов:
.
Найдем значение знаменателя при :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной в точке .
Найдем значение числителя дроби при :
.
Числитель дроби также равен нулю. У нас неопределенность вида 0/0 . Для ее раскрытия, выделим в многочленах множитель .
Вычисления делаем в уме:
,
.
Делим числитель и знаменатель на . Тогда при имеем:
.
Снова находим значения числителя и знаменателя при : ;
.
Опять неопределенность 0/0 . Снова выделяем множитель :
;
.
При имеем:
.
Функция непрерывна в точке , поскольку знаменатель дроби не равен нулю при . Поскольку функции и отличаются только в одной точке ( определена и непрерывна при , а не определена), то их пределы в любой точке равны (см. «Влияние значений функции в конечном числе точек на величину предела»). Находим искомый предел:
.
Пример 8. Неопределенность вида ∞±∞
Все примеры ⇑ Найти предел разности дробей из многочленов:
.
При имеем:
;
;
;
.
Поскольку знаменатель каждой из дробей равен нулю, а числители отличны от нуля, то при , каждая из дробей стремится к бесконечности:
при .
То есть мы имеем неопределенность вида «бесконечность минус бесконечность».
Для раскрытия неопределенности, приводим дроби к общему знаменателю. Чтобы упростить выкладки, предварительно выделим в знаменателях дробей множитель .
;
;
;
.
Таким образом, задача свелась к вычислению предела от дроби многочленов:
.
Применяем описанные выше методы.
Находим значения числителя и знаменателя при :
;
.
Поскольку числитель и знаменатель равны нулю, то это неопределенность вида 0/0 . В знаменателе множитель уже выделен. Выделим этот множитель в числителе:
.
Находим предел:
.
Автор: Олег Одинцов . Опубликовано: 23-01-2019
Видео:Матан. Пределы для успешной сдачи зачёта | TutorOnline МатематикаСкачать
Пределы с иррациональностями. Первая часть.
Пределы, содержащие иррациональности (или, попросту говоря, корни) крайне популярны у составителей типовых расчётов и контрольных работ по высшей математике. Обычно рассматриваются три группы неопределённостей:
- Неопределённость вида $frac$. Пример: $lim_frac<sqrt-2><4-sqrt>$.
- Неопределенность вида $frac$. Пример: $lim_frac<9cdot sqrt[3]+7cdotsqrt[4]><11cdot sqrt[6]+4x-10>$.
- Неопределенность вида $infty-infty$. Пример: $lim_left( sqrt-sqrt right)$.
В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $frac$.
Видео:27. Вычисление предела функции №1. Примеры 1-4Скачать
Раскрытие неопределенности $frac$.
Схема решения стандартных примеров такого типа обычно состоит из двух шагов:
- Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое «сопряжённое» выражение;
- При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
- Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.
Термин «сопряжённое выражение», использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).
Нам понадобится несколько формул, которые я запишу ниже:
Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ – корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:
Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.
Найдём отдельно пределы числителя и знаменателя:
В заданном пределе мы имеем неопределённость вида $frac$. Раскрыть эту неопределённость нам мешает разность $sqrt-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое «сопряжённое выражение». Как действует такое умножение мы сейчас и рассмотрим. Умножим $sqrt-2$ на $sqrt+2$:
Чтобы раскрыть скобки применим формулу №1, подставив в правую часть упомянутой формулы $a=sqrt$, $b=2$:
Как видите, если умножить числитель на $sqrt+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $sqrt+2$ и будет сопряжённым к выражению $sqrt-2$. Однако мы не вправе просто взять и умножить числитель на $sqrt+2$, ибо это изменит дробь $frac<sqrt-2>$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:
Теперь вспомним, что $(sqrt-2)(sqrt+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:
Неопределенность $frac$ исчезла. Сейчас можно легко получить ответ данного примера:
Замечу, что сопряжённое выражение может менять свою структуру – в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.
Запишем пределы числителя и знаменателя:
Мы имеем дело с неопределённостью вида $frac$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $frac<sqrt-sqrt>$ на выражение $sqrt+sqrt$, сопряжённое к знаменателю:
Вновь, как и в примере №1, нужно использовать формулу №1 для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=sqrt$, $b=sqrt$, получим такое выражение для знаменателя:
Вернёмся к нашему пределу:
В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать формулу №5. Для начала решим квадратное уравнение $3x^2-5x-2=0$:
Подставляя $x_1=-frac$, $x_2=2$ в формулу №5, будем иметь:
$$ 3x^2-5x-2=3cdotleft(x-left( -fracright)right)(x-2)=3cdotleft(x+fracright)(x-2)=left(3cdot x+3cdotfracright)(x-2) =(3x+1)(x-2). $$
Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся формулой №1, подставив в неё $a=x$, $b=2$:
Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:
Сокращая на скобку $x-2$ получим:
Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:
В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.
Найдём пределы числителя и знаменателя:
Имеем неопределённость вида $frac$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $sqrt+sqrt$, сопряжённое числителю. А во-вторых на выражение $sqrt-sqrt$, сопряжённое знаменателю.
Раскрывая скобки с помощью формулы №1, получим:
Возвращаясь к рассматриваемому пределу, имеем:
Осталось разложить на множители выражения $-x^2+x+20$ и $x^2-8x+15$. Начнем с выражения $-x^2+x+20$. Чтобы разложить его на множители требуется решить уравнение $-x^2+x+20=0$, а затем воспользоваться формулой №5:
Для выражения $x^2-8x+15$ получим:
Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:
В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения – избавиться от иррациональности, вызывающей неопределённость.
🎦 Видео
36. Вычисление пределов функций с использованием 2-го замечательного пределаСкачать
30. Вычисление предела функции. Неопределенность 0/0 с корнямиСкачать
Вычисление пределов #10Скачать
31. Вычисление пределов функций. Неопределенность 0/0 с корнями разных степенейСкачать
Вычисление пределов #8Скачать
33. Вычисление пределов функций. Первый замечательный пределСкачать
Вычисление пределов #4Скачать
Вычисление пределов #3Скачать
Предел функции #16Скачать
Вычисление пределов #1Скачать
Вычисление пределов #2Скачать
Пределы функций для чайников. Свойства пределов. Примеры решенияСкачать
28. Вычисление пределов функций №2. Неопределенность 0/0, заданная отношением двух многочленов.Скачать
Вычисление пределов #9Скачать
28.1. Вычисление предела функции №3. Раскрываем неопределенность 0/0.Скачать