Решение пределов с квадратным уравнением в числителе и знаменателе

Вычисление пределов. Пределы с неопределенностью

Прежде чем рассказать о вычислении пределов с неопределенностью, хочется верить, что у вас уже есть понимание того, что такое предел и как вычислить элементарные пределы. Если такого понимания нет, то сначала прочитайте статью «Пределы. Понятие пределов. Вычисление пределов».
Теперь перейдем к рассмотрению пределов с неопределенностью.

Существует группа пределов, когда x Решение пределов с квадратным уравнением в числителе и знаменателеРешение пределов с квадратным уравнением в числителе и знаменателе, а функция представляет собой дробь, подставив в которую значение х = Решение пределов с квадратным уравнением в числителе и знаменателеполучим неопределенность вида Решение пределов с квадратным уравнением в числителе и знаменателе.

Необходимо вычислить предел Решение пределов с квадратным уравнением в числителе и знаменателе

Воспользуемся нашим правилом №1 и подставим Решение пределов с квадратным уравнением в числителе и знаменателев функцию. Как видно мы получаем неопределенность Решение пределов с квадратным уравнением в числителе и знаменателе.

В числителе находим х в старшей степени, которая в нашем случае = 2:

Решение пределов с квадратным уравнением в числителе и знаменателе

То же самое проделаем со знаменателем:

Решение пределов с квадратным уравнением в числителе и знаменателе

Здесь также старшая степень = 2.

Далее надо из двух найденных степеней выбрать самую старшую. В нашем случае степень числителя и знаменателя совпадают и =2.

Итак, для раскрытия неопределенности Решение пределов с квадратным уравнением в числителе и знаменателенам потребуется разделить числитель и знаменатель на х в старшей степени, т.е. на x 2 :

Решение пределов с квадратным уравнением в числителе и знаменателе

Существуют также пределы с другой неопределенностью — вида Решение пределов с квадратным уравнением в числителе и знаменателе. Отличие от предыдущего случая лишь в том, что х стремится уже не к Решение пределов с квадратным уравнением в числителе и знаменателе, а к конечному числу.

Необходимо вычислить предел Решение пределов с квадратным уравнением в числителе и знаменателе.

Снова воспользуемся правилом №1 и подставим в место х число -1:

Решение пределов с квадратным уравнением в числителе и знаменателе

Мы получили неопределенность Решение пределов с квадратным уравнением в числителе и знаменателе, для раскрытия которой необходимо разложить числитель и знаменатель на множители, для чего в свою очередь обычно решается квадратное уравнение или используются формулы сокращенного умножения.

В нашем случае решаем уравнение:

Решение пределов с квадратным уравнением в числителе и знаменателе

Решение пределов с квадратным уравнением в числителе и знаменателе

Решение пределов с квадратным уравнением в числителе и знаменателе.

Если корень не извлекается целый вероятней всего D вычислен неправильно.

Теперь находим корни уравнения:

Решение пределов с квадратным уравнением в числителе и знаменателе

Решение пределов с квадратным уравнением в числителе и знаменателе

Решение пределов с квадратным уравнением в числителе и знаменателе

В знаменателе у нас х + 1, что итак является простейшим множителем.

Тогда наш предел примет вид:

Решение пределов с квадратным уравнением в числителе и знаменателе

х + 1 красиво сокращается:

Решение пределов с квадратным уравнением в числителе и знаменателе

Теперь подставим вместо х значение -1 в функцию и получаем:

Рассмотрим основные положения, применяемые при решении различного рода задач с пределами:

    Предел суммы 2-х или более функций равен сумме пределов этих функций:

Решение пределов с квадратным уравнением в числителе и знаменателе
Предел постоянной величины равен самой постоянной величине:

Решение пределов с квадратным уравнением в числителе и знаменателе

За знак предела можно выносить постоянный коэффициент:

Решение пределов с квадратным уравнением в числителе и знаменателе

Предел произведения 2-х и более функций равен произведению пределов этих функций ( последние должны существовать):

Решение пределов с квадратным уравнением в числителе и знаменателе

Предел отношения 2-х функций равен отношению пределов этих функций (в том случае, если предел знаменателя Решение пределов с квадратным уравнением в числителе и знаменателе0:

Решение пределов с квадратным уравнением в числителе и знаменателе

Степень функции, находящейся под знаком предела, применима к самому пределу этой функции (степень должна быть действительным числом):

Решение пределов с квадратным уравнением в числителе и знаменателе

На этом с вычислением пределов с неопределенностью всё. Еще в статье «Замечательные пределы: Первый и второй замечательный предел» мы отдельно рассматриваем интересную группу пределов. Статья вставит еще один блок для решения большинства пределов, встречающихся не просторах обучения.

Видео:Вычисление пределов #11Скачать

Вычисление пределов #11

Решение пределов с дробями из многочленов

Решение пределов с квадратным уравнением в числителе и знаменателе

Здесь мы рассмотрим примеры и методы решения пределов функций, составленных из отношений многочленов. Это дроби из многочленов и разности дробей. Обзор и обоснование методов решения таких пределов изложены в разделе Раскрытие неопределенностей с дробями.

Видео:Вычислить предел. Пример 1.Скачать

Вычислить предел. Пример 1.

Методы решения пределов с дробями из многочленов

1. Рассмотрим предел функции, которая является отношением многочленов:
, где
(1) ,
и – многочлены степеней m и n , соответственно:
;
.

1.1. Пусть есть бесконечность:
.
Тогда возникает неопределенность вида . Для ее раскрытия, нужно числитель и знаменатель дроби разделить на x s , где s – наибольшее из чисел m и n . Примеры ⇓

1.2. Пусть есть конечное число. Найдем значение знаменателя дроби, подставив :
.
1.2.1. Если , то неопределенности нет. Функция определена и непрерывна при . Значение предела равно значению функции в точке :
. Пример ⇓

1.2.2. Если знаменатель равен нулю, а числитель нет: ,
то неопределенность также отсутствует. Предел равен бесконечности:
. Пример ⇓

1.2.3. Пусть теперь и числитель, и знаменатель равны нулю:
.
В этом случае у нас возникает неопределенность вида 0/0 . Для ее раскрытия, делим числитель и знаменатель на . Деление можно выполнять либо уголком, либо в уме, приравнивая коэффициенты при одинаковых степенях переменной x . Примеры ⇓

2. Теперь рассмотрим пределы от суммы или разности отношений многочленов. В этом случае, может возникнуть неопределенность вида бесконечность плюс-минус бесконечность: . Для ее раскрытия, нужно привести дроби к общему знаменателю. В результате получим предел от функции вида (1), методы решения которого мы уже рассмотрели. Пример ⇓

Видео:29. Вычисление пределов функции №4. Неопределенность 0/0 с корнями.Скачать

29. Вычисление пределов функции №4. Неопределенность 0/0 с корнями.

Примеры решений

Все примеры Далее мы приводим подробные решения пределов дробей из многочленов.
⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Пределы при x стремящемся к бесконечности

Пример 1

Все примеры ⇑ Найти предел отношения многочленов при x стремящемся к бесконечности:
.

Разделим числитель и знаменатель дроби на . При имеем:
.
На основании свойств степенной функции, при . Применяя арифметические свойства предела функции, находим:
.

Пример 2

Все примеры ⇑ Найти предел функции, которая является отношением многочленов:
.

Разделим числитель и знаменатель дроби на . При имеем:
.
Применяя арифметические свойства предела функции, находим:
.

Пример 3

Разделим числитель и знаменатель дроби на . При имеем:
.
Применим арифметические свойства предела функции к числителю и знаменателю:
;
.
Применим свойства бесконечно малых и бесконечно больших функций:
.

Мы получили правильную величину предела: . Но бесконечно удаленная точка может включать в себя два частных случая: и . Как , так и являются . Если и, для достаточно больших |x| , , то . Если, для достаточно больших |x| , то .

Выясним, имеет ли наш предел определенный знак? Для этого преобразуем знаменатель и переведем бесконечно большую часть в числитель:
;
.
Поскольку , то . Тогда

.

Пределы в конечной точке

Пример 4. Непрерывные функции

Все примеры ⇑ Найти пределы функции

a) при ; б) при .

а) Найдем значение знаменателя в точке :
.
Поскольку знаменатель не обращается в нуль, то функция непрерывна в точке . Поэтому предел функции равен ее значению при :
.

б) Найдем значение знаменателя в точке :
.
Здесь также знаменатель не обращается в нуль. Функция непрерывна. Ее предел при равен значению при :
.

Пример 5. Бесконечно большие функции

Все примеры ⇑ Задана функция в виде отношения многочленов:
.
Найти односторонние пределы:
а) ; б) .

Найдем значение знаменателя дроби в точке :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной при . Выясним, есть ли неопределенность вида 0/0 ? Для этого найдем значение числителя в этой точке:
.
Числитель не равен нулю. Поэтому неопределенности вида 0/0 нет. Предел при равен бесконечности:
.

Но нам нужно найти односторонние пределы. Для этого выделим из многочлена в знаменателе множитель . То есть представим знаменатель в следующем виде:
.
Раскрываем скобки:

.
Сравнивая левую и правую части, находим:
.
Отсюда ,
;
.

Функция непрерывна в точке , поскольку знаменатель дроби не обращается в нуль. При , имеем:
.
Тогда
;
при .
а) Подставим :
.
б) Подставим :
.

Примечание.
Если бы знаменатель дроби не равнялся нулю при , то функция была бы непрерывной в точке . В этом случае, пределы слева и справа были бы равны:
.

Неопределенность вида 0/0

Пример 6

Найдем значение знаменателя дроби при :

.
Знаменатель дроби равен нулю. Поэтому функция не определена и, следовательно, не является непрерывной в точке .

Найдем значение числителя при :
.
Числитель дроби также равен нулю. Мы имеем неопределенность вида 0/0 . Для ее раскрытия, выделим в многочленах множитель .

Ищем разложение знаменателя в виде:
.
Раскрываем скобки и группируем члены с одинаковыми степенями x :

.
Сравнивая левую и правую части, находим:
.
Отсюда ,
.

На практике, нет необходимости выписывать неопределенные коэффициенты разложения, а затем решать систему уравнений. Подобные вычисления легко проводить в уме. Для числителя имеем:
.

Пример 7

Все примеры ⇑ Найти предел отношения многочленов:
.

Найдем значение знаменателя при :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной в точке .

Найдем значение числителя дроби при :
.
Числитель дроби также равен нулю. У нас неопределенность вида 0/0 . Для ее раскрытия, выделим в многочленах множитель .

Вычисления делаем в уме:
,
.
Делим числитель и знаменатель на . Тогда при имеем:
.

Снова находим значения числителя и знаменателя при : ;
.
Опять неопределенность 0/0 . Снова выделяем множитель :
;
.

При имеем:
.
Функция непрерывна в точке , поскольку знаменатель дроби не равен нулю при . Поскольку функции и отличаются только в одной точке ( определена и непрерывна при , а не определена), то их пределы в любой точке равны (см. «Влияние значений функции в конечном числе точек на величину предела»). Находим искомый предел:
.

Пример 8. Неопределенность вида ∞±

Все примеры ⇑ Найти предел разности дробей из многочленов:
.

При имеем:
;
;
;
.
Поскольку знаменатель каждой из дробей равен нулю, а числители отличны от нуля, то при , каждая из дробей стремится к бесконечности:
при .
То есть мы имеем неопределенность вида «бесконечность минус бесконечность».

Для раскрытия неопределенности, приводим дроби к общему знаменателю. Чтобы упростить выкладки, предварительно выделим в знаменателях дробей множитель .
;
;

;
.

Таким образом, задача свелась к вычислению предела от дроби многочленов:
.
Применяем описанные выше методы.

Находим значения числителя и знаменателя при :
;
.
Поскольку числитель и знаменатель равны нулю, то это неопределенность вида 0/0 . В знаменателе множитель уже выделен. Выделим этот множитель в числителе:
.
Находим предел:

.

Автор: Олег Одинцов . Опубликовано: 23-01-2019

Видео:Матан. Пределы для успешной сдачи зачёта | TutorOnline МатематикаСкачать

Матан. Пределы для успешной сдачи зачёта | TutorOnline Математика

Пределы с иррациональностями. Первая часть.

Пределы, содержащие иррациональности (или, попросту говоря, корни) крайне популярны у составителей типовых расчётов и контрольных работ по высшей математике. Обычно рассматриваются три группы неопределённостей:

  1. Неопределённость вида $frac$. Пример: $lim_frac<sqrt-2><4-sqrt>$.
  2. Неопределенность вида $frac$. Пример: $lim_frac<9cdot sqrt[3]+7cdotsqrt[4]><11cdot sqrt[6]+4x-10>$.
  3. Неопределенность вида $infty-infty$. Пример: $lim_left( sqrt-sqrt right)$.

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $frac$.

Видео:27. Вычисление предела функции №1. Примеры 1-4Скачать

27. Вычисление предела функции №1. Примеры 1-4

Раскрытие неопределенности $frac$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое «сопряжённое» выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин «сопряжённое выражение», использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ – корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Найдём отдельно пределы числителя и знаменателя:

В заданном пределе мы имеем неопределённость вида $frac$. Раскрыть эту неопределённость нам мешает разность $sqrt-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое «сопряжённое выражение». Как действует такое умножение мы сейчас и рассмотрим. Умножим $sqrt-2$ на $sqrt+2$:

Чтобы раскрыть скобки применим формулу №1, подставив в правую часть упомянутой формулы $a=sqrt$, $b=2$:

Как видите, если умножить числитель на $sqrt+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $sqrt+2$ и будет сопряжённым к выражению $sqrt-2$. Однако мы не вправе просто взять и умножить числитель на $sqrt+2$, ибо это изменит дробь $frac<sqrt-2>$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

Теперь вспомним, что $(sqrt-2)(sqrt+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

Неопределенность $frac$ исчезла. Сейчас можно легко получить ответ данного примера:

Замечу, что сопряжённое выражение может менять свою структуру – в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Запишем пределы числителя и знаменателя:

Мы имеем дело с неопределённостью вида $frac$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $frac<sqrt-sqrt>$ на выражение $sqrt+sqrt$, сопряжённое к знаменателю:

Вновь, как и в примере №1, нужно использовать формулу №1 для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=sqrt$, $b=sqrt$, получим такое выражение для знаменателя:

Вернёмся к нашему пределу:

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать формулу №5. Для начала решим квадратное уравнение $3x^2-5x-2=0$:

Подставляя $x_1=-frac$, $x_2=2$ в формулу №5, будем иметь:

$$ 3x^2-5x-2=3cdotleft(x-left( -fracright)right)(x-2)=3cdotleft(x+fracright)(x-2)=left(3cdot x+3cdotfracright)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся формулой №1, подставив в неё $a=x$, $b=2$:

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

Сокращая на скобку $x-2$ получим:

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Найдём пределы числителя и знаменателя:

Имеем неопределённость вида $frac$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $sqrt+sqrt$, сопряжённое числителю. А во-вторых на выражение $sqrt-sqrt$, сопряжённое знаменателю.

Раскрывая скобки с помощью формулы №1, получим:

Возвращаясь к рассматриваемому пределу, имеем:

Осталось разложить на множители выражения $-x^2+x+20$ и $x^2-8x+15$. Начнем с выражения $-x^2+x+20$. Чтобы разложить его на множители требуется решить уравнение $-x^2+x+20=0$, а затем воспользоваться формулой №5:

Для выражения $x^2-8x+15$ получим:

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения – избавиться от иррациональности, вызывающей неопределённость.

🎦 Видео

36. Вычисление пределов функций с использованием 2-го замечательного пределаСкачать

36. Вычисление пределов функций с использованием 2-го замечательного предела

30. Вычисление предела функции. Неопределенность 0/0 с корнямиСкачать

30. Вычисление предела функции. Неопределенность 0/0 с корнями

Вычисление пределов #10Скачать

Вычисление пределов #10

31. Вычисление пределов функций. Неопределенность 0/0 с корнями разных степенейСкачать

31. Вычисление пределов функций. Неопределенность 0/0 с корнями разных степеней

Вычисление пределов #8Скачать

Вычисление пределов #8

33. Вычисление пределов функций. Первый замечательный пределСкачать

33. Вычисление пределов функций. Первый замечательный предел

Вычисление пределов #4Скачать

Вычисление пределов #4

Вычисление пределов #3Скачать

Вычисление пределов #3

Предел функции #16Скачать

Предел функции #16

Вычисление пределов #1Скачать

Вычисление пределов #1

Вычисление пределов #2Скачать

Вычисление пределов #2

Пределы функций для чайников. Свойства пределов. Примеры решенияСкачать

Пределы функций для чайников. Свойства пределов. Примеры решения

28. Вычисление пределов функций №2. Неопределенность 0/0, заданная отношением двух многочленов.Скачать

28. Вычисление пределов функций №2. Неопределенность 0/0, заданная отношением двух многочленов.

Вычисление пределов #9Скачать

Вычисление пределов #9

28.1. Вычисление предела функции №3. Раскрываем неопределенность 0/0.Скачать

28.1.  Вычисление предела функции №3. Раскрываем неопределенность 0/0.
Поделиться или сохранить к себе: