Решение параметрических уравнений в маткад

Решение параметрических уравнений в маткад

Глава 4. Решение уравнений

4.2 Решение уравнений с переменными параметрами

Если нужно многократно решать уравнение при изменении одного или несколько его параметров, то необходимо создать собственную функцию, включающую функцию root . Такая функция принимает Mathcad «к сведению». Для ее вычисления надо задать значения (диапазоны значений) параметров, указанных в названии функции. Например, в функции f ( a , x )= ax – tg ( ax ) , варьируя параметр a , находим соответствующий каждому значению а, находим соответствующий каждому значению а корень уравнения x ( обращающий f ( a , x ) в нуль). Результаты расчета можно вывести в виде вектора решений х0 или графика x 0 ( a ) (рис. 4.5). Начальное приближение при этом задается лишь один раз. Результат предыдущего вычисления является начальным приближением для последующего.

один переменный параметр Решение параметрических уравнений в маткад

Решение параметрических уравнений в маткад Решение параметрических уравнений в маткад Решение параметрических уравнений в маткад Решение параметрических уравнений в маткад Решение параметрических уравнений в маткад

Решение параметрических уравнений в маткадРешение параметрических уравнений в маткад

Рис. 4. 5 Решение уравнения с одним переменным параметром

Решение уравнения f ( b , c , x )= x 2 + bx – c =0 , приведенное на рис. 4.6, зависит от численных значений параметров b и c . Задавая значение одного из параметров в виде константы, а другого в виде дискретной переменной, с помощью функции root можно найти ряд решений уравнения, соответствующих заданным значениям параметров b и c . В таблице 4.6 выведены значения корня уравнения x 0 при с=4 и b – ряде значений, определяемых дискретной переменной b . На графике b – ряды значений. Так как функция root выводит значение одного корня, а квадратное уравнение имеет два корня, поменяйте значение начального приближения для вывода таблицы и графика, соответствующих второму корню. При построении графика поверхности x 0 ( b , c ) значения параметров b = 0–10 и c = 0–5 заданы с помощью меню 3– D Plot Format → Quick Plot Data , открывающегося после двойного щелчка мышью в поле графика.

Решение параметрических уравнений в маткадРешение параметрических уравнений в маткад

Решение параметрических уравнений в маткадпоменяйте знак начального приближения

(ведь у квадратного уравнения два корня),

Решение параметрических уравнений в маткадх0 — решение уравнения

Вывод результатов расчета

Решение параметрических уравнений в маткад Решение параметрических уравнений в маткадРешение параметрических уравнений в маткад

Рис. 4. 6 Решение уравнения с двумя переменными параметрами

Видео:Mathcad Prime. Урок 5 - Способы решения уравненийСкачать

Mathcad Prime. Урок 5 - Способы решения уравнений

Решение параметрических уравнений в маткад

Для решения одного уравнения с одним неизвестным используется функция root. Аргументами этой функции являются выражение и переменная, входящая в выражение. Ищется значение переменной, при котором выражение обращается в ноль. Функция возвращает значение переменной, которое обращает выражение в ноль.

root( f(z), z)Возвращает значение z, при котором выражение или функция f(z) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.

Первый аргумент есть либо функция, определенная где-либо в рабочем документе, или выражение. Выражение должно возвращать скалярные значения.

Второй аргумент — имя переменной, которое используется в выражении. Это та переменная, варьируя которую Mathcad будет пытаться обратить выражение в ноль. Этой переменной перед использованием функции root необходимо присвоить числовое значение. Mathcad использует его как начальное приближение при поиске корня.

Рассмотрим пример, как найти a — решение уравнения e x = x 3 . Для этого выполните следующие шаги:

  • Определите начальное значение переменной x. Введите x:3. Выбор начального приближения влияет на корень, возвращаемый Mathcad (если выражение имеет несколько корней).

Решение параметрических уравнений в маткад

  • Определите выражение, которое должно быть обращено в ноль. Для этого перепишите уравнение e x = x 3 в виде x 3 — e x = 0. Левая часть этого выражения и является вторым аргументом функции root
  • Определите переменную a как корень уравнения. Для этого введите a:root(x^3[Space]-e^x[Space],x).

Решение параметрических уравнений в маткад

  • Напечатайте a=, чтобы увидеть значение корня.

Решение параметрических уравнений в маткад

При использовании функции root имейте в виду следующее:

  • Удостоверьтесь, что переменной присвоено начальное значение до начала использования функции root.
  • Для выражения с несколькими корнями, например x 2 — 1 = 0, начальное значение определяет корень, который будет найден Mathcad. На Рисунке 1 приведен пример, в котором функция root возвращает различные значения, каждое из которых зависит от начального приближения.
  • Mathcad позволяет находить как комплексные, так и вещественные корни. Для поиска комплексного корня следует взять в качестве начального приближения комплексное число.
  • Задача решения уравнения вида f(x) = g(x) эквивалентна задаче поиска корня выражения f(x) — g(x) =0. Для этого функция root может быть использована следующим образом:

Функция root предназначена для решения одного уравнения с одним неизвестным. Для решения систем уравнений используйте методику, описанную в следующем разделе “Системы уравнений”. Для символьного решения уравнений или нахождения точного численного решения уравнения в терминах элементарных функций выберите Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

Решение параметрических уравнений в маткад

Рисунок 1: Использование графика и функции root для поиска корней уравнения.

Что делать, когда функция root не сходится

Mathcad в функции root использует для поиска корня метод секущей. Начальное значение, присвоенное переменной x, становится первым приближением к искомому корню. Когда значение выражения f(x) при очередном приближении становится меньше значения встроенной переменной TOL, корень считается найденным, и функция root возвращает результат.

Если после многих итераций Mathcad не может найти подходящего приближения, то появляется сообщение об ошибке “отсутствует сходимость”. Эта ошибка может быть вызвана следующими причинами:

  • Уравнение не имеет корней.
  • Корни уравнения расположены далеко от начального приближения.
  • Выражение имеет локальные максимумы или минимумы между начальным приближением и корнями.
  • Выражение имеет разрывы между начальным приближением и корнями.
  • Выражение имеет комплексный корень, но начальное приближение было вещественным (или наоборот).

Чтобы установить причину ошибки, исследуйте график f(x). Он поможет выяснить наличие корней уравнения f(x)=0 и, если они есть, то определить приблизительно их значения. Чем точнее выбрано начальное приближение корня, тем быстрее функция root будет сходиться к точному значению. roots;using plots to find

Некоторые советы по использованию функции root

В этом разделе приведены несколько советов по использованию функции root:

  • Для изменения точности, с которой функция root ищет корень, можно изменить значение встроенной переменной TOL. Если значение TOL увеличивается, функция root будет сходиться быстрее, но ответ будет менее точен. Если значение TOL уменьшается, функция root будет сходиться медленнее, но ответ будет более точен. Чтобы изменить значение TOL в определенной точке рабочего документа, используйте определение вида TOL := 0.01. Чтобы изменить значение TOL для всего рабочего документа, выберите из меню Математика команду Встроенные переменные и введите подходящее значение в поле TOL. Нажав “OK”, выберите из меню Математика команду Пересчитать всё, чтобы обновить все вычисления в рабочем документе с использованием нового значения переменной TOL.
  • Если уравнение имеет несколько корней, пробуйте использовать различные начальные приближения, чтобы найти их. Использование графика функции полезно для нахождения числа корней выражения, их расположения и определения подходящих начальных приближений. Рисунок 1 показывает пример. Если два корня расположены близко друг от друга, можно уменьшить TOL, чтобы различить их.
  • Если f(x) имеет малый наклон около искомого корня, функция может сходиться к значению r, отстоящему от корня достаточно далеко . В таких случаях для нахождения более точного значения корня необходимо уменьшить значение TOL. Другой вариант заключается в замене уравнения f(x)=0 на g(x)=0, где

Решение параметрических уравнений в маткад

  • Для выражения f(x) с известным корнем a нахождение дополнительных корней f(x) эквивалентно поиску корней уравнения h(x)=0, где h(x)=f(x)/(x-a). Подобный приём полезен для нахождения корней, расположенных близко друг к другу. Часто бывает проще искать корень выражения h(x), определенного выше, чем пробовать искать другой корень уравнения f(x)=0, выбирая различные начальные приближения.
  • Решение уравнений с параметром

    Предположим, что нужно решать уравнение многократно при изменении одного из параметров этого уравнения. Например, пусть требуется решить уравнение для нескольких различных значений параметра a. Самый простой способ состоит в определении функции

    Чтобы решить уравнение для конкретного значения параметра a, присвойте значение параметру a и начальное значение переменной x как аргументам этой функции. Затем найдите искомое значение корня, вводя выражение f(a,x)=.

    Рисунок 2 показывает пример того, как такая функция может использоваться для нахождения корней исследуемого уравнения при различных значениях параметра. Обратите внимание, что, хотя начальное значение x непосредственно входит в определение функции, нет необходимости определять его в другом месте рабочего документа.

    Решение параметрических уравнений в маткад

    Рисунок 2: Определение функции пользователя с функцией root.

    Нахождение корней полинома

    Для нахождения корней выражения, имеющего вид

    лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения. Кроме того, функция polyroots возвращает сразу все корни, как вещественные, так и комплексные. На Рисунках 3 и 4 приведены примеры использования функции polyroots.

    polyroots(v)Возвращает корни полинома степени . Коэффициенты полинома находятся в векторе v длины n+1. Возвращает вектор длины n, состоящий из корней полинома.

    Функция polyroots всегда возвращает значения корней полинома, найденные численно. Чтобы находить корни символьно, используйте команду Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

    Решение параметрических уравнений в маткад

    Рисунок 3: Использование функции polyroots для решения задачи, изображенной на Рисунке 1.

    Решение параметрических уравнений в маткад

    Рисунок 4: Использование функции polyroots для поиска корней полинома.

    Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

    Видео:Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

    Средство для решения систем уравнений в MathCAD 14 (29/34)

    Решение параметрических уравнений в маткад

    Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

    Решение параметрических уравнений в маткад

    Решение параметрических уравнений в маткад

    Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

    Решение параметрических уравнений в маткад

    В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

    Решение параметрических уравнений в маткад

    При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

    Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

    Решение параметрических уравнений в маткад

    Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства Решение параметрических уравнений в маткадсистема уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

    Решение параметрических уравнений в маткад

    Пример использования блока given…find для решения системы уравнений:

    💥 Видео

    Mathcad-09. Пример: уравненияСкачать

    Mathcad-09. Пример: уравнения

    MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

    MathCAD  Решение уравнений с помощью функции root 1 вариант

    Пример решения уравнения в MathCAD 14 (33/34)Скачать

    Пример решения уравнения в MathCAD 14 (33/34)

    Решение систем линейных уравнений в MathCAD 14 (31/34)Скачать

    Решение систем линейных уравнений в MathCAD 14 (31/34)

    MathCAD Решение системы уравненийСкачать

    MathCAD  Решение системы уравнений

    Решение СЛАУ в пакете MathCadСкачать

    Решение СЛАУ в пакете MathCad

    Работа с MathCad Prime. Решение дифференциальных уравнений.Скачать

    Работа с MathCad Prime. Решение дифференциальных уравнений.

    8. MathCad. Решение систем линейных алгебраических уравненийСкачать

    8. MathCad. Решение систем линейных алгебраических уравнений

    MathCAD. Given - FindСкачать

    MathCAD. Given - Find

    MathCAD Решение системы линейных уравнений матричным методомСкачать

    MathCAD  Решение системы линейных уравнений матричным методом

    Числовое решение. Функция root в MathCAD 14 (28/34)Скачать

    Числовое решение. Функция root в MathCAD 14 (28/34)

    2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.Скачать

    2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.

    Mathcad Prime (часть 2)Скачать

    Mathcad Prime (часть 2)

    Приближенное решение систем уравнений в MathCAD 14 (30/34)Скачать

    Приближенное решение систем уравнений в MathCAD 14 (30/34)

    1 - Решение систем нелинейных уравнений в MatlabСкачать

    1 - Решение систем нелинейных уравнений в Matlab
    Поделиться или сохранить к себе: