Решение неоднородных уравнений в маткад

Решение неоднородных уравнений в маткад

  • Решение неоднородных уравнений в маткад
  • Решение неоднородных уравнений в маткад

Видео:Mathcad-09. Пример: уравненияСкачать

Mathcad-09. Пример: уравнения

Mathcad для студентов

Видео:Работа с MathCad Prime. Решение дифференциальных уравнений.Скачать

Работа с MathCad Prime. Решение дифференциальных уравнений.

Mathcad для начинающих

Видео:Пример решения уравнения в MathCAD 14 (33/34)Скачать

Пример решения уравнения в MathCAD 14 (33/34)

Скачать программы бесплатно

Видео:Mathcad Prime. Урок 5 - Способы решения уравненийСкачать

Mathcad Prime. Урок 5 - Способы решения уравнений

Функции предназначенные для решения обыкновенных дифференциальных уравнений в Mathcad

Для решения обыкновенных дифференциальных уравнений и систем обыкновенных дифференциальных уравнений в Mathcad введен ряд функций. Рассмотрим их:

  • odesolve(x,b,step) — используется для решения обыкновенного дифференциального уравнения, заданного как в виде задачи Коши, так и в виде краевой задачи. Начальные условия и дифференциальное уравнение должны быть определены в блоке given. Параметры функции: х –переменная, по которой производится интегрирование; b — конечное значение промежутка решения; step – величина шага численного метода (параметр необязательный).
  • rkfixed(u,a,b,N,D) – реализует в Mathcad численное решение задачи Коши по методу Рунге – Кутта с фиксированным шагом. Имеет следующие преимущества перед odesolve(x,b,step): может быть использована в программных модулях и позволяет оперативно пересчитывать результаты при изменении параметров. Параметры функции: u-вектор начальных условий; a и b – граничные значения отрезка решения задачи; N – число интервалов разбиения отрезка [a,b]; D(x,y) –вектор-функция, содержащая правые части первых производных, записанные в символьном виде.
  • Rkadapt(u, a,b, N, D) — возвращает матрицу в Mathcad, содержащую таблицу значений решения задачи Коши на интервале от a до b для уравнения или системы обыкновенных дифференциальных уравнений, вычисленную методом Рунге-Кутта с переменным шагом и начальными условиями в векторе u, D(x,y) –вектор функция, содержащая правые части первых производных, записанная в символьном виде, n — число шагов.
  • Функция Rkadapt() вследствие автоматического подбора шага, как правило, дает более точный результат по сравнению с другими функциями в Mathcad.

Видео:Решение систем линейных уравнений в MathCAD 14 (31/34)Скачать

Решение систем линейных уравнений в MathCAD 14 (31/34)

Метод конечных разностей в Mathcad

В случае краевых задач для линейных дифференциальных уравнений в Mathcad применяются формулы для аппроксимации производных соответствующими конечно – разностными отношениями. Это позволяет свести решение дифференциальных уравнений к решению системы линейных уравнений. Результаты получают в дискретных i – ых точках интервала решения задачи. При этом отрезок [a,b] разбивается на n частей с шагом h =(b-a)/n. Для аппроксимации соответствующих производных в Mathcad используют следующие формулы:

Решение неоднородных уравнений в маткадТаким образом, сделав соответствующую замену, получаем систему линейных уравнений, решение которой средствами Mathcad не представляет сложностей. Решение задачи методом конечных разностей приведено на листинге

Решение неоднородных уравнений в маткад

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Задача Коши в Mathcad

Задача Коши в Mathcad для дифференциальных уравнений n-го порядка с одной неизвестной (обыкновенное дифференциальное уравнение — ОДУ) формулируется следующим образом. Найти решение дифференциального уравнения

Решение неоднородных уравнений в маткад

в виде функции y=y(x), которая удовлетворяет заданным начальным условиям

Решение неоднородных уравнений в маткад

где Решение неоднородных уравнений в маткад— заданные значение. Решение задачи Коши для обыкновенных дифференциальных уравнений второго и более высоких порядков можно свести к системе уравнений. Решение задачи Коши для ОДУ первого порядка в Mathcad с использованием различных функций приведено на листинге.

Наибольшее распространение для решения задачи Коши в Mathcad получил метод Рунге – Кутта. Суть метода состоит в последовательном отыскании искомого значения функции yi+1 по формуле

Решение неоднородных уравнений в маткад

За h принимается достаточно малый шаг, с помощью которого весь интервал задачи Коши разбивается на дискретные точки, в которых и ищется решение. Погрешность результатов пропорциональна пятой степени шага (h5).

Геометрический смысл метода Рунге – Кутта состоит в следующем. Из очередной точки (xi,yi) выбирается направление (угол) Решение неоднородных уравнений в маткад, для которого tg(Решение неоднородных уравнений в маткад)=f(xi,yi). На этом направлении вычисляется точка с координатами Решение неоднородных уравнений в маткадЗатем из точки (xi,yi) выбирается направление (угол) Решение неоднородных уравнений в маткад, для которого

tg(Решение неоднородных уравнений в маткад)=fРешение неоднородных уравнений в маткадРешение неоднородных уравнений в маткад

На этом направлении вычисляется точка с координатами Решение неоднородных уравнений в маткад Далее из точки (xi,yi) выбирается направление (угол) Решение неоднородных уравнений в маткад, для которого Решение неоднородных уравнений в маткад

На этом направлении в Mathcad вычисляется точка с координатами Решение неоднородных уравнений в маткадПосле чего из точки (xi,yi) выбирается направление (угол) Решение неоднородных уравнений в маткад, для которого Решение неоднородных уравнений в маткад. Все четыре полученных направления усредняются в соответствии с формулой для расчета Решение неоднородных уравнений в маткад. На этом результирующем направлении и строится расчетная точка с координатами

Решение неоднородных уравнений в маткад

Метод Рунге – Кутта благодаря высокой точности широко используется при численном решении дифференциальных уравнений и в частности в Mathcad. Существует несколько разновидностей данного метода, которые нашли свое отражение в рассмотренных выше функциях. На листинге можно не только сравнить результаты, полученные на основе различных функций, но и оценить эти результаты с позиций точности расчетов.

Путем сравнения результатов решения задачи, можно сделать вывод о точности решения задачи. Наиболее точный результат позволяет получить функция Rkadapt.

Видео:Mathcad-10. Пример: дифференциальные уравненияСкачать

Mathcad-10. Пример: дифференциальные уравнения

Краевые задачи в Mathcad

Краевые задачи в Mathcad отличаются от задачи Коши состоит тем, что в краевой задаче начальные условия задаются на концах интервала поиска решения. Для решения подобных задач в системе Mathcad используется метод пристрелки, который начальное условие в правой точке интервала преобразует в дополнительное начальное условие для левой точки интервала. После чего краевая задача трансформируется в задачу Коши, методы решения которой были рассмотрены в предыдущем разделе. Для реализации метода пристрелки в Mathcad существует функция sbval. Данная функция определяет недостающие условия в начальной точке для двухточечных краевых задач. Функция имеет следующий синтаксис sbval(z,a,b,D,load,score), где z – вектор приближений недостающих начальных условий на левой границе; a,b – левая и правая граница интервала решений; D(x,y) – вектор-функция, содержащая правые части первых производных, записанная в символьном виде; load(a,z) – вектор-функция, описывающая начальные условия на левой границе интервала; score(b,y) – вектор-функция для задания правых граничных условий. Пример решения краевой задачи приведен на листинге.

Решение неоднородных уравнений в маткад

Видео:Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

Средство для решения систем уравнений в MathCAD 14 (29/34)

Дифференциальное уравнение в Mathcad

Функции предназначенные для решения обыкновенных дифференциальных уравнений

Для решения дифференциальных уравнений и систем дифференциальных уравнений в Mathсad введен ряд функций.

Решение задачи Коши

Задача Коши для дифференциальных уравнений n-го порядка с одной неизвестной.

Краевые задачи

Разница краевой задачи и задачи Коши состоит в том, где задается интервала поиска решения.

Метод конечных разностей

В Mathcad в краевых задачах для уравнений применяются формулы для аппроксимации производных соответствующими отношениями.

Видео:Решение СЛАУ в пакете MathCadСкачать

Решение СЛАУ в пакете MathCad

Тема 7. Решение дифференциальных уравнений и систем в MathCad

Решение неоднородных уравнений в маткад

Краткие теоретические сведения

Для решения дифференциальных уравнений с начальными условиями система Mathcad имеет ряд встроенных функций:

rkfixed – функция для решения ОДУ и систем ОДУ методом Рунге–Кутта четвертого порядка с постоянным шагом;

Rkadapt – функция решения ОДУ и систем ОДУ методом Рунге–Кутта с переменным шагом;

Odesolve – функция, решающая ОДУ блочным методом.

Ниже приведено описание стандартной функции rkfixed с указанием параметров функции.

y – вектор начальных условий из k элементов ( k – количество уравнений в системе);

x1 и x2 – левая и правая границы интервала, на котором ищется решение ОДУ или системы ОДУ;

p – число точек внутри интервала (x1, x2), в которых ищется решение;

D – вектор, состоящий из k-элементов, который содержит первую производную искомой функции или первые производные искомых функций, если речь идет о решении системы.

Результатом работы функции является матрица из p +1 строк, первый столбец которой содержит точки, в которых получено решение, а остальные столбцы – сами решения.

На рисунке 2.7.1 приведены конкретные примеры решения различных дифференциальных уравнений и систем ОДУ в MathCAD .

Решение неоднородных уравнений в маткад

Решение неоднородных уравнений в маткад

Рисунок 2.7.1 – Примеры решения дифференциальных уравнений и систем

При решении дифференциального уравнения первого порядка нужно создать вектор начальных условий из одного элемента Y 1 , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора Y , границы интервала, на котором ищется решение уравнения, например, (0 ; 2), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой результирующей функции. При построении графика функции первый столбец полученной матрицы указывается как аргумент, второй столбец – как функция.

При решении системы дифференциальных уравнений нужно создать вектор начальных условий из двух элементов, например, вектор v , который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции rkfixed указывается имя вектора v , и границы интервала, на котором ищется решение уравнения, например, (0 ; 5), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D . В результате получается матрица s , в первом столбце которой содержатся значения аргумента искомых функций, во втором и третьем столбцах – значения самих функций при соответствующем значении аргумента. При построении графика можно воспользоваться первым столбцом полученной матрицы как аргументом, а вторым и третьим столбцами – как функциями.

На рисунке 2.7.2 приведен пример решения дифференциального уравнения второго порядка с использованием функции rkfixed . Необходимо решить дифференциальное уравнение второго порядка с заданными начальными условиями вида:

Решение неоднородных уравнений в маткад

Решение неоднородных уравнений в маткад

Рисунок 2.7.2 – Пример решения дифференциальных уравнений второго порядка с помощью rkfixed

Для решения уравнения с помощью функции rkfixed нужно выполнить замену переменных и привести дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. Вид этих уравнений приведен ниже.

Решение неоднородных уравнений в маткад

Документ формируется точно так же, как и при решении системы ОДУ.

На рисунке 2.7.2 показана возможность вычисления вектора второй производной найденной функции – вектора а, построены графики исходной функции, функций первой и второй производных.

Практическая часть темы 7

7.1 Решение дифференциальных уравнений первого порядка

Последовательность действий для р ешения дифференциального уравнения первого порядка такова:

q сформировать вектор начальных условий из одного элемента, присвоив начальное значение искомой функции переменной с индексом, например: Решение неоднородных уравнений в маткадили Решение неоднородных уравнений в маткад(в зависимости от значения переменной ORIGIN );

q определить вектор-функцию из одного элемента, которая содержит первую производную неизвестной функции:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомой функции (независимая переменная), второй – имя вектора, содержащего искомую функцию (можно использовать имя вектора начальных условий), например, D ( x , Y );

· набрать оператор «:=» и выражение для первой производной (выразить из дифференциального уравнения), в котором вместо имени искомой функции подставлен первый элемент вектора-параметра, например, для уравнения Решение неоднородных уравнений в маткадвектор-функция будет определятся следующим образом: Решение неоднородных уравнений в маткад( если ORIGIN = 0 , подставлять Решение неоднородных уравнений в маткад);

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первую производную, без параметров;

например: Решение неоднородных уравнений в маткад,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой функции);

q вывести матрицу, содержащую решение ДУ с помощь оператора «=», например: Z = ;

q построить график найденной функции ( см. тему 5 ), указав в качестве аргумента по оси абсцисс столбец Решение неоднородных уравнений в маткад, а в качестве значения функции по оси ординат – столбец Решение неоднородных уравнений в маткад( если ORIGIN = 0 , набирать соответственно Решение неоднородных уравнений в маткади Решение неоднородных уравнений в маткад).

Пример 7.1 Найти численное решение дифференциального уравнения первого порядка Решение неоднородных уравнений в маткадна интервале от 0.2 до 5 в 1000 точках, при начальном условии y (0)=0.1.

Выполнить графическую интерпретацию результатов.

Решение неоднородных уравнений в маткад

7.2 Решение систем дифференциальных уравнений

Последовательность действий для р ешения системы дифференциальных уравнений первого порядка такова (описана для значения ORIGIN =0 ):

q перейти в исходной системе уравнений к однотипным обозначениям функций и выразить первые производные,

например, систему Решение неоднородных уравнений в маткадможно преобразовать в Решение неоднородных уравнений в маткад;

q в документе MathCad сформировать вектор начальных условий, количество элементов которого равно количеству уравнений системы, присвоив его некоторой переменной (см. тему 2);

например, Решение неоднородных уравнений в маткад;

q определить вектор-функцию, которая содержит первые производные искомых функций:

· набрать имя функции с двумя параметрами: первый параметр – аргумент искомых функций (независимая переменная), второй – имя вектора, содержащего искомые функции (можно использовать имя вектора начальных условий), например, D ( t , V );

(Замечание: если независимая переменная явно не присутствует в системе, то в качестве ее имени можно выбрать любую переменную)

· набрать оператор «:=» и вставить шаблон вектора, количество элементов которого равно количеству уравнений системы (см. тему 2)

· набрать в качестве элементов вектора правые части системы уравнений, в которых искомые функции представлены соответствующими элементами вектора-параметра, например,

Решение неоднородных уравнений в маткад;

q присвоить некоторой переменной значение функции rkfixed , указав в скобках следующие параметры:

· первый – имя вектора начальных условий,

· второй – левая граница интервала, на котором ищется решение, в виде числовой константы,

· третий – правая граница интервала, на котором ищется решение, в виде числовой константы,

· четвертый – количество точек, в которых ищется решение,

· пятый – имя вектора-функции, описывающего первые производные, без параметров;

например: Решение неоднородных уравнений в маткад,

(в результате получится матрица Z , в первом столбце которой содержатся значения аргумента искомых функций, во втором – значения первой функции, в третьем – значения второй функции и т. д.);

q вывести матрицу, содержащую решение системы ДУ с помощь оператора «=», например: Z = ;

q построить графики найденных функций ( см. тему 5 ), указав в качестве аргумента по оси абсцисс первый столбец матрицы решений, например, Решение неоднородных уравнений в маткад, а в качестве значений функций по оси ординат – остальные столбцы матрицы через запятую, например, Решение неоднородных уравнений в маткад, Решение неоднородных уравнений в маткади т. д.

Пример 7.2 Найти решение системы дифференциальных уравнений

Решение неоднородных уравнений в маткад

на интервале от 0 до 0.5 в 1000 точках, при следующих начальных условиях: x (0)=0.1 и y (0)=1.

Выполнить графическую интерпретацию результатов.

Видео:Пример решения системы уравнений в MathCAD 14 (34/34)Скачать

Пример решения системы уравнений в MathCAD 14 (34/34)

28. Тема 7. Решение дифференциальных уравнений и систем в MathCad. Краткие теоретические сведения

Для решения дифференциальных уравнений с начальными условиями система Mathcad имеет ряд встроенных функций:

Rkfixed – функция для решения ОДУ и систем ОДУ методом Рунге–Кутта четвертого порядка с постоянным шагом;

Rkadapt – функция решения ОДУ и систем ОДУ методом Рунге–Кутта с переменным шагом;

Odesolve – функция, решающая ОДУ блочным методом.

Ниже приведено описание стандартной функции Rkfixed с указанием параметров функции.

Y – вектор начальных условий из K элементов (k – количество уравнений в системе);

X1 и X2 – левая и правая границы интервала, на котором ищется решение ОДУ или системы ОДУ;

P – число точек внутри интервала (x1, x2), в которых ищется решение;

D – вектор, состоящий из K-Элементов, который содержит первую производную искомой функции или первые производные искомых функций, если речь идет о решении системы.

Результатом работы функции является матрица из p+1 строк, первый столбец которой содержит точки, в которых получено решение, а остальные столбцы – сами решения.

На рисунке 2.7.1 приведены конкретные примеры решения различных дифференциальных уравнений и систем ОДУ в MathCAD.

Решение неоднородных уравнений в маткад

При решении дифференциального уравнения первого порядка нужно создать вектор начальных условий из одного элемента Y1, который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции Rkfixed Указывается имя вектора Y, границы интервала, на котором ищется решение уравнения, например, (0 ; 2), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D. В результате получается матрица Z, в первом столбце которой содержатся значения аргумента искомой функции, во втором – значения самой результирующей функции. При построении графика функции первый столбец полученной матрицы указывается как аргумент, второй столбец – как функция.

При решении системы дифференциальных уравнений нужно создать вектор начальных условий из двух элементов, например, вектор V, который затем используется при формировании вектора-функции правой части дифференциального уравнения. При обращении к функции Rkfixed Указывается имя вектора V, и границы интервала, на котором ищется решение уравнения, например, (0 ; 5), количество точек, в которых ищется решение – 100, вектор-функция, описывающая правую часть дифференциального уравнения – D. В результате получается матрица S, в первом столбце которой содержатся значения аргумента искомых функций, во втором и третьем столбцах – значения самих функций при соответствующем значении аргумента. При построении графика можно воспользоваться первым столбцом полученной матрицы как аргументом, а вторым и третьим столбцами – как функциями.

На рисунке 2.7.2 приведен пример решения дифференциального уравнения второго порядка с использованием функции Rkfixed. Необходимо решить дифференциальное уравнение второго порядка с заданными начальными условиями вида:

Решение неоднородных уравнений в маткад

Решение неоднородных уравнений в маткад

Рисунок 2.7.2 – Пример решения дифференциальных уравнений второго порядка с помощью Rkfixed

Для решения уравнения с помощью функции Rkfixed нужно выполнить замену переменных и привести дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. Вид этих уравнений приведен ниже.

Решение неоднородных уравнений в маткад

Документ формируется точно так же, как и при решении системы ОДУ.

На рисунке 2.7.2 показана возможность вычисления вектора второй производной найденной функции – вектора А, построены графики исходной функции, функций первой и второй производных.

💥 Видео

3.Системы нелинейных уравнений MathcadСкачать

3.Системы нелинейных уравнений Mathcad

Ключевое слово solve в MathCAD 14 (26/34)Скачать

Ключевое слово solve в MathCAD 14 (26/34)

8. MathCad. Решение систем линейных алгебраических уравненийСкачать

8. MathCad. Решение систем линейных алгебраических уравнений

MathCAD Решение системы линейных уравнений матричным методомСкачать

MathCAD  Решение системы линейных уравнений матричным методом

Mathcad Prime (часть 2)Скачать

Mathcad Prime (часть 2)

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

MathCAD  Решение уравнений с помощью функции root 1 вариант

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами
Поделиться или сохранить к себе: