Решение неоднородных линейных уравнений матричным методом

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Матричный метод онлайн

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

Решение неоднородных линейных уравнений матричным методом(1)

Для решения системы линейных уравнений (1) матричным методом запишем ее матричном виде:

Ax=b,(2)
Решение неоднородных линейных уравнений матричным методомРешение неоднородных линейных уравнений матричным методомРешение неоднородных линейных уравнений матричным методом(3)

Мы будем предполагать, что матрица A имеет обратное, т.е. определитель матрицы A не равен нулю.

Умножим матричное уравнение (2) на обратную матрицу A −1 . Тогда

A −1 Ax=A −1 b.(4)

Учитывая определение обратной матрицы, имеем A −1 A=E, где E— единичная матрица. Следовательно (4) можно записать так:

Ex=A −1 b.(4)

или, учитывая, что Ex=x:

x=A −1 b.(5)

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Решение неоднородных линейных уравнений матричным методом

Матричный вид записи системы линейных уравнений: Ax=b, где

Решение неоднородных линейных уравнений матричным методом.

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

Решение неоднородных линейных уравнений матричным методом.

Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого заменяем местами строки 1 и 2:

Решение неоднородных линейных уравнений матричным методом.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

Решение неоднородных линейных уравнений матричным методом.

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого заменяем местами строки 2 и 3:

Решение неоднородных линейных уравнений матричным методом.

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

Решение неоднородных линейных уравнений матричным методом.

Исключим элементы 3-го столбца матрицы выше главной диагонали. Для этого сложим строки 1, 2 со строкой 3, умноженной на 17/53, 85/159 соответственно:

Решение неоднородных линейных уравнений матричным методом.

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

Решение неоднородных линейных уравнений матричным методом.

Делим каждую строку матрицы на ведущий элемент соответствующей строки:

Решение неоднородных линейных уравнений матричным методом.

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

Решение неоднородных линейных уравнений матричным методом.

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

Решение неоднородных линейных уравнений матричным методомРешение неоднородных линейных уравнений матричным методом.
Решение неоднородных линейных уравнений матричным методом

Пример 2. Решить следующую систему линейных уравнений матричным методом:

Решение неоднородных линейных уравнений матричным методом.

Матричный вид записи системы линейных уравнений: Ax=b, где

Решение неоднородных линейных уравнений матричным методом.

Найдем обратную к матрице A методом алгебраических дополнений. Вычислим определитель матрицы A :

Решение неоднородных линейных уравнений матричным методом.

Вычислим все алгебраические дополнения матрицы A:

Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом,
Решение неоднородных линейных уравнений матричным методом.

Обратная матрица вычисляется из следующего выражения:

Решение неоднородных линейных уравнений матричным методом

где Aij − алгебраическое дополнение элемента матрицы A, находящиеся на пересечении i-ой строки и j-ого столбца, а Δ − определитель матрицы A.

Используя формулу обратной матрицы, получим:

Решение неоднородных линейных уравнений матричным методомРешение неоднородных линейных уравнений матричным методом

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A −1 b. Тогда

Видео:Матричный метод решения систем линейных неоднородных алгебраических уравненийСкачать

Матричный метод решения систем линейных неоднородных алгебраических уравнений

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Линейные уравнения. Решение систем линейных уравнений матричным методом.

Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.

Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.

Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:

Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):

Решение неоднородных линейных уравнений матричным методом

Значит, её легко перевести в матричную форму:

AX=B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

Решение неоднородных линейных уравнений матричным методом

Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.

Т.к. A −1 A=E, значит, X=A −1 B. Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A. Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A:

Для однородной системы линейных уравнений, т.е. если вектор B=0, выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0. Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.

Т.о., решение СЛАУ матричным методом производится по формуле Решение неоднородных линейных уравнений матричным методом. Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .

Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.

Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Пример решения неоднородной СЛАУ.

Решение неоднородных линейных уравнений матричным методом

Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.

Решение неоднородных линейных уравнений матричным методом

Далее вычисляем алгебраические дополнения для элементов матрицы, которая состоит из коэффициентов при неизвестных. Эти коэффициенты нужны будут для вычисления обратной матрицы.

Решение неоднородных линейных уравнений матричным методом

Решение неоднородных линейных уравнений матричным методом

Решение неоднородных линейных уравнений матричным методом

Теперь находим союзную матрицу, транспонируем её и подставляем в формулу для определения обратной матрицы.

Решение неоднородных линейных уравнений матричным методом

Подставляем переменные в формулу:

Решение неоднородных линейных уравнений матричным методом

Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.

Решение неоднородных линейных уравнений матричным методом

При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например:

Решение неоднородных линейных уравнений матричным методом

НЕЛЬЗЯ записать как:

Решение неоднородных линейных уравнений матричным методом

Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:

Решение неоднородных линейных уравнений матричным методом

Решение неоднородных линейных уравнений матричным методом

Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x1, x2, …, xn могут оказаться другие буквы. К примеру:

Решение неоднородных линейных уравнений матричным методом

в матричной форме записываем так:

Решение неоднородных линейных уравнений матричным методом

Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

🎦 Видео

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Решение неоднородных линейных систем. ТемаСкачать

Решение неоднородных линейных систем. Тема

6 способов в одном видеоСкачать

6 способов в одном видео

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать

Линейная алгебра, 7 урок, СЛАУ. Матричный метод

Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Неоднородные системы линейных уравненийСкачать

Неоднородные системы линейных уравнений

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать

Линейная алгебра, Матрицы: Метод Гаусса. Высшая математика

Крамера. Гаусса. Матричный метод. Система линейных уравнений. 3 способа решенияСкачать

Крамера. Гаусса. Матричный метод. Система линейных уравнений.  3 способа решения

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений
Поделиться или сохранить к себе: