Данный калькулятор предназначен для решения нелинейных уравнений онлайн. Нелинейное уравнение в общем виде выглядит следующим образом: f(x)=0, где f(x)-непрерывная функция аргумента x. Нелинейные уравнения могут быть двух видов: алгебраические и трансцендентные. Если функция алгебраическая, то такое уравнение называется алгебраическим. Трансцендентное уравнение – это уравнение, в котором функция содержит не алгебраические функции (логарифмические, тригонометрические, показательные и т.п.).
Методы решения нелинейных уравнений можно разделить на два вида: прямые и итерационные. При прямом методе решений нелинейного уравнения существует возможность записи решения в виде некоторой формулы. По этой формуле могут быть определены корни уравнения с помощью ограниченного числа арифметических операций. Однако большинство нелинейных уравнений не могут быть решены прямым методом. Итерационные методы подразумевают получение приближенного значения корней уравнений с любой заданной точностью.
Чтобы найти решение нелинейного уравнения, введите исходные данные в соответствующие ячейки калькулятора.
Видео:Метод простых итераций пример решения нелинейных уравненийСкачать
Метод Ньютона
Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .
- Решение онлайн
- Видеоинструкция
- Оформление Word
Правила ввода функции, заданной в явном виде
- Примеры правильного написания F(x) :
- 10•x•e 2x = 10*x*exp(2*x)
- x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
- x 3 -x 2 +3 = x^3-x^2+3
- Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .
Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
Приближенное нахождение корней уравнения складывается из двух этапов:- Отделение корней, то есть установление интервалов [αi,βi] , в которых содержится один корень уравнения.
- f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
- f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
- f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
- Уточнение приближенных корней, то есть доведение их до заданной точности.
Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать
Геометрическая интерпретация метода Ньютона (метод касательных)
Критерий завершения итерационного процесса имеет вид
Видео:Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
Нелинейные уравнения
Уравнение вида f (x) = 0, где f (x) — некая нелинейная функция, называется нелинейным. Виды таких уравнений: алгебраические, где функция алгебраическая, и трансцендентные, в которых функция может быть тригонометрическая, показательная и т.д.
При решении нелинейных уравнений используются прямые (точные) и итерационные (численные) методы. Решить точным методом — значит, представить решение в виде формулы, по которой находят корни уравнения. Для уравнений выше 4-й степени невозможно написать аналитическое решение.
Бывает, что в уравнении присутствуют приближенные коэффициенты. В этом случае для решения уравнения применяют итерационные методы, где заранее задается точность. Решение уравнения такими методами предполагает нахождение корней (или их отсутствие) и определение их значения с заданной точностью.Решение нелинейных уравнений
Корнем уравнения f (x) = 0 является такое значение с, при котором f© = 0.
Уравнение f (x) = 0 имеет одно решение на отрезке |а;b| при условии, что функция f (x):
— непрерывна и монотонна на данном отрезке;
— значения функции на концах отрезка с разными знаками, т.е. f (а)• f (b) меньше 0.Вычисление корня уравнения f (x) = 0 путем использования численных методов:
— устанавливаем знаки функции в предельных точках области ее существования
х = а, х = b;
— определяем приближенное значение корня или промежутка, в котором он находится;
— уточняем приближенное значение до определенной точности.Данный калькулятор станет для вас надежным помощником при решении нелинейных уравнений онлайн. Вам потребуется лишь ввести исходные данные в окна калькулятора.
🌟 Видео
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
Решение систем уравнений методом подстановкиСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Решение систем уравнений второго порядка. 8 класс.Скачать
Графический метод решения систем линейных уравнений 7 классСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать