Решение нелинейных уравнение метод деления пополам

Решение нелинейных уравнение метод деления пополам

Pers.narod.ru. Обучение. Лекции по численным методам. Приближённое решение нелинейных алгебраических уравнений

1. Приближенное решение нелинейных алгебраических уравнений

Дано нелинейное алгебраическое уравнение

Нелинейность уравнения означает, что график функции не есть прямая линия, т.е. в f(x) входит x в некоторой степени или под знаком функции.

Решить уравнение – это найти такое x* ∈ R: f(x*)=0. Значение x* называют корнем уравнения. Нелинейное уравнение может иметь несколько корней. Геометрическая интерпретация корней уравнения представлена на рис. 1. Корнями уравнения (1) являются точки x1*, x2*, x3*, в которых функция f(x) пересекает ось x.

Решение нелинейных уравнение метод деления пополамМетоды решения нелинейного уравнения (1) можно разделить на точные (аналитические) и приближенные (итерационные). В точных методах корень представляется некоторой алгебраической формулой. Например, решение квадратных уравнений, некоторых тригонометрических уравнений и т. д.

В приближенных методах процесс нахождения решения, вообще говоря, бесконечен. Решение получается в виде бесконечной последовательности <xn>, такой, что Решение нелинейных уравнение метод деления пополам. По определению предела, для любого (сколь угодно малого) ε, найдется такое N, что при n>N, |xn x*| / (x) не меняет знак на отрезке [a, b], т.е. f(x) – монотонная функция, в этом случае отрезок [a,b] будет интервалом изоляции.

Если корней несколько, то для каждого нужно найти интервал изоляции.

Существуют различные способы исследования функции: аналитический, табличный, графический.

Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее поведения при Решение нелинейных уравнение метод деления пополами нахождение участков возрастания и убывания функции.

Графический способ – это построение графика функции f(x) и определение числа корней по количеству пересечений графика с осью x.

Табличный способ это построение таблицы, состоящей из столбца аргумента x и столбца значений функции f(x). О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

Решить уравнение x 3 ‑ 6x 2 +3x+11=0, т.е. f(x)= x 3 ‑ 6x 2 +3x+11.

Найдем производную f / (x)=3x 2 -12x+3.

Найдем нули производной f / (x)=3x 2 -12x+3=0; D=144-4*3*3=108;

X1=Решение нелинейных уравнение метод деления пополам= 0.268;

X2=Решение нелинейных уравнение метод деления пополам= 3.732;

Так как f / (Решение нелинейных уравнение метод деления пополам)>0, то f / (x)>0 при Решение нелинейных уравнение метод деления пополам, f / (x) / (x)>0 при Решение нелинейных уравнение метод деления пополам. Кроме того, f(Решение нелинейных уравнение метод деления пополам)=Решение нелинейных уравнение метод деления пополам 0. Следовательно, на интервалеРешение нелинейных уравнение метод деления пополам возрастает от Решение нелинейных уравнение метод деления пополам до f(x1)= 3x1 2 -12x1+3=11.39; на интервале Решение нелинейных уравнение метод деления пополам— убывает до f(x2)= 3x2 2 -12x2+3=-9.39 и на интервале Решение нелинейных уравнение метод деления пополам возрастает до Решение нелинейных уравнение метод деления пополам, т.е. уравнение имеет три корня.

Найдем интервалы изоляции для каждого из корней.

Рассмотрим для первого корня отрезок [-2, -1]:

f(-2)= -27 0, f / (x)>0 при Решение нелинейных уравнение метод деления пополам т.е. этот отрезок является интервалом изоляции корня.

Рассмотрим для второго корня отрезок [1, 3]:

f(1)= 9>0, f(3)= -7 / (x) 0, f / (x)>0 при Решение нелинейных уравнение метод деления пополам т.е. этот отрезок является интервалом изоляции корня.

Видео:Численное решение уравнений, урок 2/5. Метод деления отрезка пополамСкачать

Численное решение уравнений, урок 2/5. Метод деления отрезка пополам

Метод половинного деления (метод дихотомии или метод бисекции)

Теорема 2. Итерационный процесс половинного деления сходится к искомому корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим последовательность чисел ξi являющихся приближением корня на i -ом шаге.
ξi=½(bi+ai), i=0,1.
где a0=a; b0=b; ai;bi — границы подынтервалов, в которых f(ai)f(bi) 0 мы ни задали, всегда можно найти такое n , что Решение нелинейных уравнение метод деления пополамч.т.д.
Графически метод дихотомии выглядит следующим образом
Решение нелинейных уравнение метод деления пополам
|f(c)|≤δ f(a)f(c) 10 = 1024 ≈ 10 3 раз. За 20 итераций (n=2) уменьшается в 2 20 ≈ 10 6 раз.

Пример №1 . Найти экстремум функции: y=5x 2 -4x+1 методом дихотомии, если ε=0.1, а исходный интервал [0,10].

  • Решение
  • Видео решение

Пример №3 . Методом бисекции найти решение нелинейного уравнения на отрезке [a,b] с точностью ε = 10 -2 . Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε = 10 -4 . Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
sqrt(t)+x 2 = 10, a = 2.6, b = 3

Найдем корни уравнения: Решение нелинейных уравнение метод деления пополам
Используем для этого Метод половинного деления (метод дихотомии)..
Считаем, что отделение корней произведено и на интервале [a,b] расположен один корень, который необходимо уточнить с погрешностью ε.
Итак, имеем f(a)f(b) 1 /2(a+b) и вычисляем f(c). Проверяем следующие условия:
1. Если |f(c)| 1 /2 n (b-a)
В качестве корня ξ. возьмем 1 /2(an+bn). Тогда погрешность определения корня будет равна (bn – an)/2. Если выполняется условие:
(bn – an)/2 1 /2(an+bn).
Решение.
Поскольку F(2.6)*F(3) 0, то a=2.8
Итерация 2.
Находим середину отрезка: c = (2.8 + 3)/2 = 2.9
F(x) = 0.113
F(c) = -0.487
Поскольку F(c)•F(x) 0, то a=2.825
Остальные расчеты сведем в таблицу.

Ncabf(c)f(x)
12.632.8-1.6275-0.4867
22.832.9-0.48670.1129
32.82.92.850.1129-0.1893
42.82.852.825-0.1893-0.3386
52.8252.852.8375-0.3386-0.2641
62.83752.852.8438-0.2641-0.2267

Ответ: x = 2.8438; F(x) = -0.2267
Решение было получено и оформлено с помощью сервиса Метод Ньютона онлайн

Пример №2 . Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью ε1 = 0,01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2 = 0,0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.

Видео:Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.Скачать

Алгоритмы. Нахождение корней уравнений методом деления отрезка пополам.

Метод деления отрезка пополам (метод бисекции)

Один из простейших методов нахождения корней нелинейных уравнений состоит в следующем. Допустим, что нам удалось найти отрезок [а, b], на котором расположено искомое значение корня (далее мы предполагаем, что х = с – единственный корень на отрезке [а, b], а если корней на [а, b] несколько, то в результате применения метода деления отрезка пополам и метода хорд (см. разд. 1.1.3) будет найдено приближенное значение одного из корней) х = с, т.е. Решение нелинейных уравнение метод деления пополам.

В качестве начального приближения корня с0 принимаем середину этого отрезка: с0=(а+b)/2. Далее исследуем значения функции F(x) на концах отрезков [а, с0] и [с0, b], т.е. в точках а, с0, b. Тот из отрезков, на концах которого F(x) принимает значения разных знаков, содержит искомый корень; поэтому его принимаем в качестве нового отрезка [a1,b1]. Вторую половину отрезка [а, b], на которой знак F(x) не меняется, отбрасываем. В качестве первого приближения корня принимаем середину нового отрезка c1 = (a1+b1)/2 и т.д. Таким образом, k приближение вычисляем как

Решение нелинейных уравнение метод деления пополам(1.2)

После каждой итерации отрезок, на котором расположен корень, уменьшается вдвое, а после kитераций он сокращается в 2kраз:

Решение нелинейных уравнение метод деления пополам(1.3)

Пусть приближенное решение Решение нелинейных уравнение метод деления пополамтребуется найти с точностью до некоторого заданного малого числа ε > 0:

Решение нелинейных уравнение метод деления пополам(1.4)

Взяв в качестве приближенного решения k-еприближение корня: Решение нелинейных уравнение метод деления пополам, запишем (1.4) с учетом обозначения Решение нелинейных уравнение метод деления пополам — сk в виде:

Решение нелинейных уравнение метод деления пополам(1.5)

Из (1.2) следует, что (1.5) выполнено, если

Решение нелинейных уравнение метод деления пополам(1.6)

Таким образом, итерационный процесс нужно продолжать до тех пор, пока не будет выполнено условие (1.6).

Метод деления отрезка пополам проиллюстрирован на рис. 1.1. Пусть для определенности F(a) 0. В качестве начального приближения корня примем с0 = (а + b)/2. Поскольку в рассматриваемом случае F(c0) 0 и F(b) > 0. Таким образом, сРешение нелинейных уравнение метод деления пополам[с0, c1],а2=с0, b2 = с1. Аналогично находим другие приближения: с2=(с0+c1)/2и т.д. до выполнения условия (1.6).

Решение нелинейных уравнение метод деления пополам

Рис. 1.1. Метод деления отрезка пополам

В отличие от большинства других итерационных методов метод деления отрезка пополам всегда сходится, причем можно гарантировать, что полученное решение будет иметь любую наперед заданную точность (разумеется, в рамках разрядности компьютера). При применении этого метода нет необходимости приближенно определять момент достижения требуемой точности, пользуясь, например, условиями близости двух последовательных приближений (2.22) или (2.23) (записанными для скалярного случая). Вместо них применяется соотношение (1.6), гарантирующее выполнение (1.4).

Однако метод деления отрезка пополам довольно медленный. Вычислим число итераций N, требуемое для достижения точности ε. Для этого выясним, пользуясь (1.3), для каких kвыполнено условие (1.6), и возьмем в качестве N наименьшее из таких k. Окончательно получим

Решение нелинейных уравнение метод деления пополам(1.7)

где Е(х) – целая часть числа х. Обычно для метода деления отрезка пополам N больше, чем для некоторых других методов, что не является препятствием к применению этого метода, если каждое вычисление значения функции F(x) несложно.

Итерационный процесс можно завершать и тогда, когда значение функции F(x) после k итерации станет меньшим по модулю ε, т.е.

Решение нелинейных уравнение метод деления пополам(1.8)

Такое условие окончания итераций аналогично условию (2.24). Действительно, для уравнения (1.1) величина F(ck)есть невязка(см. разд. 2.2.2),полученная на kйитерации.

На рис. 1.2 представлен алгоритм итерационного процесса нахождения корня уравнения (1.1) методом деления отрезка пополам. Здесь сужение отрезка осуществляется заменой границ а или bна текущее значение корня с. При этом значение F(a) вычисляют лишь один раз, поскольку нам нужен только знак функции F(x) на левой границе, а он в процессе итераций не меняется.

Решение нелинейных уравнение метод деления пополам

Рис. 1.2. Алгоритм метода деления отрезка пополам

🔥 Видео

Метод половинного деления решение нелинейного уравненияСкачать

Метод половинного деления решение нелинейного уравнения

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деленияСкачать

Отделение корней уравнений аналитическим методом. Уточнение корней методом половинного деления

Решение нелинейного уравнения методом деления отрезка пополамСкачать

Решение нелинейного уравнения методом деления отрезка пополам

1.1 Решение нелинейных уравнений метод деления отрезка пополам (бисекций) Мathcad15Скачать

1.1 Решение нелинейных уравнений метод деления отрезка пополам (бисекций) Мathcad15

Метод половинного деления. ДихотомияСкачать

Метод половинного деления. Дихотомия

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

14 Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

Метод дихотомииСкачать

Метод дихотомии

Решение нелинейного уравнения методом половинного деления (программа)Скачать

Решение нелинейного уравнения методом половинного деления (программа)

Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравненияСкачать

8 Метод половинного деления Calc Excel Численные методы решения нелинейного уравнения

Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод половинного деленияСкачать

Метод половинного деления

Метод половинного деления - ВизуализацияСкачать

Метод половинного деления - Визуализация

7 Метод половинного деления Mathcad Численные методы решения нелинейного уравненияСкачать

7 Метод половинного деления Mathcad Численные методы решения нелинейного уравнения

Решение уравнений методом деления отрезка пополам в табличных процессорахСкачать

Решение уравнений методом деления отрезка пополам в табличных процессорах

Метод половинного деления Ручной счет Численные методы решения нелинейного уравненияСкачать

Метод половинного деления Ручной счет Численные методы решения нелинейного уравнения

6 Метод половинного деления C++ Численные методы решения нелинейного уравненияСкачать

6 Метод половинного деления C++ Численные методы решения нелинейного уравнения

Урок 10. C++ Метод половинного деленияСкачать

Урок 10.  C++ Метод половинного деления
Поделиться или сохранить к себе: