Решение модульных уравнений 7 класс

Решение уравнений с модулем в курсе математики 7-8 класса

Практически каждый учитель знает, какие проблемы вызывают у учащихся задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах.

Выбор темы обусловлен тем, что, во-первых, задачи, связанные с абсолютными величинами, часто встречаются на математических олимпиадах и на экзаменах, во-вторых, это понятие широко применяется не только в различных разделах школьного курса математики, но и в курсе высшей математики. Так в математическом анализе понятие абсолютной величины числа используется при определении основных понятий: предела, ограниченности функции и других. В теории приближенных вычислений употребляется понятие абсолютной погрешности. В механике, в геометрии изучается понятие вектора, одной из характеристик которого служит его длина (модуль вектора).
Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, учителю необходимо находить разнообразные методические приемы, использовать различные подходы и методы в обучении решению задач с модулем. Разнообразие методов будет способствовать сознательному усвоению математических знаний, вовлечению учащихся в творческую деятельность, а также решению ряда методических задач, встающих перед учителем в процессе обучения, в частности, реализации внутрипредметных связей (алгебра-геометрия), расширению области использования графиков, повышению графической культуры учеников.

Указанные обстоятельства обусловили выбор темы творческой работы. Цель работы: показать необходимость более глубокого рассмотрения темы «Решение уравнений с модулем» в школьной программе; разработать методические рекомендации по использованию различных методов при решении задач с модулем. §1. Основные способы, используемые при решении уравнений, содержащих модуль.

Напомним основные понятия, используемые в данной теме. Уравнением с одной переменной называют равенство, содержащее переменную. Корнями уравнения называются значения переменной, при которых уравнение обращается в верное равенство. Решить уравнение – значит, найти все его корни или доказать, что корней нет. Уравнением с модулем называют равенство, содержащее переменную под знаком модуля.

При решении уравнений, содержащих знак абсолютной величины, мы будем основываться на определении модуля числа и свойствах абсолютной величины числа.

Существует несколько способов решения уравнений с модулем. Рассмотрим подробнее каждый из них.

1 способ. Метод последовательного раскрытия модуля.

Пример 1. Решим уравнение |х-5|=4.

Исходя из определения модуля, произведем следующие рассуждения. Если выражение, стоящее под знаком модуля неотрицательно, то есть х-5≥0, то уравнение примет вид х-5=4. Если значение выражения под знаком модуля отрицательно, то по определению оно будет равно – (х-5)=4 или х-5= -4. Решая полученные уравнения, находим: х1=9, х2=1.
Ответ: 9; 1.
Решим этим же способом уравнение, содержащее «модуль в модуле».

Пример 2. Решим уравнение ||2х-1|-4|=6.

Рассуждая аналогично, рассмотрим два случая.
1). |2х-1|-4=6, |2х-1|=10. Используя еще раз определение модуля, получим: 2х-1=10 либо 2х-1= -10. Откуда х1=5,5, х2= -4,5.
2). |2х-1|-4= -6, |2х-1|= -2. Понятно, что в этом случае уравнение не имеет решений, так как по определению модуль всегда неотрицателен.
Ответ: 5,5; -4,5.
2 способ. Метод интервалов.
Опорная информация:

Метод интервалов – это метод разбиения числовой прямой на промежутки, в которых по определению модуля знак абсолютной величины можно будет снять. Для каждого из промежутков необходимо решить уравнение и сделать вывод относительно получившихся корней. Корни, удовлетворяющие промежуткам, и дадут окончательный ответ.

Пример 3. Решим уравнение |х+3|+|х-1|=6.
Найдем корни (нули) каждого выражения, содержащегося под знаком модуля: х+3=0, х= -3; х-1=0, х=1. Эти значения х разбивают числовую прямую на три промежутка:
-3 1

Решим уравнение отдельно в каждом из получившихся промежутков. В первом промежутке (х Давыдова Наталья Александровна 12.06.2011 240991 0

Видео:Сложное уравнения с модулем. Алгебра 7 класс.Скачать

Сложное уравнения с модулем. Алгебра 7 класс.

Уравнение с модулем

Уравнение с модулем достаточно сложная тема для начинающих. Учитывая это обстоятельство, в данный урок войдут только элементарные уравнения.

Что такое уравнение с модулем и как его решить?

В уравнениях с модулем неизвестное значение содержится под знáком модуля. Например:

Уравнения с модулем бывают разными и решаются они различными методами. Нельзя сказать что какой-то метод наиболее рационален. Всё зависит от исходного уравнения.

Например, в каких-то уравнениях можно просто угадать корень, в то время как в других нужно логически мыслить, раскрывать модули, выполнять тождественные преобразования. Человек волен выбирать каким методом решения пользоваться.

К примеру, решим вышеприведённое уравнение |x − 2| = 5 . Допустим, что мы не знаем ни одного метода решения. Как бы мы его решили?

Прежде всего заметим, что правая часть данного уравнения равна числу 5. Слева же располагается модуль из выражения |x − 2| . Это означает что подмодульное выражение x − 2 должно равняться числу 5 или −5

Решение модульных уравнений 7 класс

Значит нужно выяснить при каких значениях переменной x подмодульное выражение x − 2 будет обращаться в число 5 или −5.

Искомые значения x найдутся если приравнять подмодульное выражение к числу 5 и −5, а затем поочерёдно решить каждое из уравнений:

Решение модульных уравнений 7 класс

Значит корнями уравнения |x − 2| = 5 являются числа 7 и −3.

Большинство элементарных уравнений с модулем можно решить используя правило раскрытия модуля. Для этого раскрывают модуль содержащийся в уравнении, затем получившееся выражение подставляют в исходное уравнение вместо выражения с модулем.

Раскрывать модуль нужно для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля.

Решим наше уравнение |x − 2| = 5 с помощью правила раскрытия модуля. Выпишем отдельно его модуль и раскроем его:

Решение модульных уравнений 7 класс

В этой конструкции говорится, что если подмодульное выражение x − 2 больше или равно нулю, то модуль раскроется как x − 2, и тогда исходное уравнение примет вид x − 2 = 5 , откуда x = 7

Решение модульных уравнений 7 класс

А если же подмодульное выражение x − 2 меньше нуля, то модуль раскроется как −(x − 2) . Тогда исходное уравнение примет вид −(x − 2) = 5 , откуда x = −3

Решение модульных уравнений 7 класс

Итак, уравнение |x − 2|= 5 имеет корни 7 и −3. Для проверки подстáвим числа 7 и −3 в исходное уравнение вместо x . Тогда получим верное равенство:

Решение модульных уравнений 7 класс

Подмодульное выражение как правило содержит такое x, которое может обращать всё подмодульное выражение как в положительное число, так и в отрицательное, либо вообще в ноль.

Поэтому модуль и раскрывается для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля. Каждый из случаев будет давать независимое уравнение со своим корнем.

Вернёмся теперь к моменту, где мы раскрывали модуль:

Решение модульных уравнений 7 класс

Условия x − 2 ≥ 0 и x − 2 являются неравенствами, которые можно решить, тем самым приведя их к простому виду:

Решение модульных уравнений 7 класс

Символ ⇔ означает равносильность. В данном случае указывается, что условие x − 2 ≥ 0 равносильно условию x ≥ 2 , а условие x − 2 равносильно условию x

Такой вид записи условий позволяет однозначно сказать при каких x модуль будет раскрываться с плюсом, а при каких с минусом.

В первом случае получилось условие x ≥ 2. Это значит что при всех x бóльших либо равных 2, модуль |x − 2| будет раскрываться с плюсом. Так, при x = 7, подмодульное выражение станет равно 5

А значит дальнейшее раскрытие будет с плюсом

Таким же образом модуль |x − 2| будет вести себя и с другими значениями x на промежутке x ≥ 2 . То есть, будет раскрываться с плюсом. Примеры:

При x = 3, |3 − 2|=|1| = 1
При x = 4, |4 − 2|=|2| = 2
При x = 2, |2 − 2|=|0| = 0
При x = 13, |13 − 2|=|11| = 11

А во втором случае получилось условие x . Это значит что при всех x мéньших 2, модуль будет раскрываться с минусом. Так, при x = −3, подмодульное выражение опять же станет равно 5. Но в промежуточных вычислениях можно увидеть, что модуль раскрывается с минусом:

Модуль |x − 2| будет вести себя так же и с другими значениями x на промежутке x . Примеры:

При x = 1, |1 − 2|=|−1| = −(−1) = 1
При x = 0, |0 − 2|=|−2| = −(−2) = 2
При x = −1, |−1 − 2|=|−3| = −(−3) = 3
При x = −9,|−9 − 2|=|−11| = −(−11) = 11

Число 2 является своего рода точкой перехода, в которой модуль |x − 2| меняет свой порядок раскрытия.

Можно представить как модуль |x − 2| двигался по маршруту от минус бесконечности до числа 2, раскрываясь в каждой точке с минусом. Попав в точку 2, модуль поменял свой порядок раскрытия — а именно раскрывшись в точке 2 с плюсом, он далее стал раскрываться с плюсом, двигаясь в правую часть к плюс бесконечности.

С помощью координатной прямой это можно представить так:

Решение модульных уравнений 7 класс

Красные знаки минуса и плюса указывают, как будет раскрываться модуль |x − 2| на промежутках x и x ≥ 2 .

Точку перехода можно найти для любого модуля. Для этого нужно узнать при каких x подмодульное выражение равно нулю. Ноль это то значение, до и после которого модуль всегда сохраняет свой знак. Это следует из правила раскрытия модуля:

Решение модульных уравнений 7 класс

В этом примере в момент когда x станет равным нулю, модуль |x| раскроется с плюсом и далее при всех x , бóльших нуля, будет раскрываться с плюсом. Напротив, при всех x , мéньших нуля модуль будет раскрываться с минусом:

Решение модульных уравнений 7 класс

А например для модуля |2x + 6| точкой перехода будет число −3 , потому что при его подстановке в подмодульное выражение 2x + 6 вместо x, данное подмодульное выражение станет равно нулю. Изобразим это на рисунке:

Решение модульных уравнений 7 класс

При всех x, бóльших либо равных −3 , модуль будет раскрываться с плюсом. Примеры:

При x = −3, |2 × (−3) + 6| = |0| = 0
При x = 4, |2 × 4 + 6| = |14| = 14
При x = 5, |2 × 5 + 6| = |16| = 16

А при всех x, мéньших 3, модуль будет раскрываться с минусом. Примеры:

При x = −4, |2 × (−4) + 6| = |−2| = −(−2) = 2
При x = −5, |2 × (−5) + 6| = |−4| = −(−4) = 4
При x = −6, |2 × (−6) + 6| = |−6| = −(−6) = 6

Пример 2. Решить уравнение |x| + 3x = −2

Решение

Раскроем модуль, который содержится в левой части уравнения:

Решение модульных уравнений 7 класс

Если x ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 3x = −2 . Сразу решим это уравнение:

Решение модульных уравнений 7 класс

Теперь рассмотрим второй случай — когда xx + 3x = −2 . Решим и это уравнение:

Решение модульных уравнений 7 класс

Получили корни Решение модульных уравнений 7 класси −1.

Выполним проверку, подставив найденные корни в исходное уравнение. Проверим корень Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Видим, что при подстановке корня Решение модульных уравнений 7 классисходное уравнение не обращается в верное равенство. Значит Решение модульных уравнений 7 классне является корнем исходного уравнения.

Проверим теперь корень −1

Решение модульных уравнений 7 класс

Получили верное равенство. Значит из двух найденных решений только −1 является корнем уравнения.

Ответ: −1.

Здесь можно сделать важный вывод. В уравнениях с модулем найденные корни не всегда удовлетворяют исходному уравнению. Чтобы убедиться в правильности своего решения, нужно выполнять проверку, подставляя найденные корни в исходное уравнение.

Кроме того, проверить является ли найденное значение корнем уравнения можно с помощью условия, согласно которому был раскрыт модуль.

Так, в данном примере мы раскрывали модуль |x| для случаев когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля:

Решение модульных уравнений 7 класс

Условия x≥0 и x x + 3x = −2 . Корнем этого уравнения стало число Решение модульных уравнений 7 класс. Это число не удовлетворяет условию x ≥ 0, согласно которому был раскрыт модуль |x| и согласно которому было получено уравнение x + 3x = −2 . Действительно, при подстановке числа Решение модульных уравнений 7 классв неравенство x ≥ 0 получается неверное неравенство.

А при раскрытии модуля со знаком минус, получилось уравнение −x + 3x = −2 . Корнем этого уравнения стало число −1 . Это число удовлетворяет условию x −x + 3x = −2 . Действительно, при подстановке числа −1 в неравенство x получается верное неравенство.

Пример 3. Решить уравнение |1 − 2x| − 4x = −6

Решение

Решение модульных уравнений 7 класс

При раскрытии модуля |1 − 2x| со знаком плюс, получим уравнение 1 − 2x − 4x = −6 . Решим его:

Решение модульных уравнений 7 класс

При раскрытии модуля |1 − 2x| со знаком минус, получим уравнение −1 + 2x − 4x = −6. Решим его:

Решение модульных уравнений 7 класс

Получили корни Решение модульных уравнений 7 класси Решение модульных уравнений 7 класс.

Корень Решение модульных уравнений 7 классне удовлетворяет условию Решение модульных уравнений 7 класс, значит не является корнем исходного уравнения.

Корень Решение модульных уравнений 7 классудовлетворяет условию Решение модульных уравнений 7 класс, значит является корнем исходного уравнения. Проверка также покажет это:

Решение модульных уравнений 7 класс

Ответ: Решение модульных уравнений 7 класс.

Пример 4. Решить уравнение | x 2 − 3x | = 0

Решение

Если модуль числа равен нулю, то подмодульное выражение тоже равно нулю:

Решение модульных уравнений 7 класс

То есть можно не раскрывать модуль. Достаточно узнать при каких значениях x подмодульное выражение равно нулю. В данном случае для этого нужно решить неполное квадратное уравнение:

Решение модульных уравнений 7 класс

Получили корни 0 и 3. Оба корня удовлетворяют исходному уравнению. Проверка показывает это:

Решение модульных уравнений 7 класс

Пример 5. Решить уравнение x 2 − 5|x| + 6 = 0

Выпишем отдельно модуль |x| и раскроем его:

Решение модульных уравнений 7 класс

При раскрытии модуля |x| со знаком плюс, исходное уравнение примет вид x 2 − 5x + 6 = 0 . Это квадратное уравнение. Решим его с помощью дискриминанта:

Решение модульных уравнений 7 класс

Оба корня удовлетворяют условию x ≥ 0 , значит являются корнями исходного уравнения.

При раскрытии модуля |x| со знаком минус, исходное уравнение примет вид x 2 + 5x + 6 = 0 . Это тоже квадратное уравнение. Решим его как и предыдущее:

Решение модульных уравнений 7 класс

При условии x ≥ 0 , модуль из уравнения раскрылся с плюсом, получились корни 3 и 2. Оба корня удовлетворяют условию x ≥ 0 , значит удовлетворяют и исходному уравнению.

При условии x , модуль из уравнения раскрылся с минусом, получились корни −2 и −3. Оба корня удовлетворяют условию x , значит удовлетворяют и исходному уравнению.

Ответ: 3, 2, −2 и −3.

Сведéние уравнения с модулем в совокупность

Большинство элементарных уравнений с модулем можно решить сведéнием их к так называемой совокупности уравнений.

Элементарными мы будем называть те уравнения с модулем, в которых левая часть является модулем из какого-то выражения, а правая часть — числом. Например, |x| = 3 или |2x − 1| = 3.

Решим наше самое первое уравнение |x − 2| = 5 сведéнием его к совокупности уравнений. Корнями этого уравнения были числа 7 и −3. Это уравнение тоже считается элементарным.

Если раскрыть модуль |x − 2| со знаком плюс, то уравнение |x − 2| = 5 примет вид x − 2 = 5 .

Если раскрыть модуль |x − 2| со знаком минус, то уравнение |x − 2| = 5 примет вид −(x − 2) = 5 , то есть −x + 2 = 5 .

Видим, что из уравнения |x − 2| = 5 получилось два уравнения: x − 2 = 5 и −x + 2 = 5 . Причём каждое из уравнений имеет свой собственный корень. Уравнение x − 2 = 5 имеет корень 7, а уравнение −x + 2 = 5 — корень −3

Выпишем уравнения x − 2 = 5 и −x + 2 = 5 и объединим их квадратной скобкой:

Решение модульных уравнений 7 класс

Такой вид записи называют совокупностью уравнений.

Совокупность уравнений — это несколько уравнений, объединённых квадратной скобкой, и имеющих множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Так, число 7 является решением совокупности Решение модульных уравнений 7 класспотому что это число удовлетворяет первому уравнению х − 2 = 5 .

Число −3 тоже является решением данной совокупности, поскольку удовлетворяет второму уравнению − х + 2 = 5.

Вместе же числа 7 и −3 образуют множество решений данной совокупности.

В отличие от системы уравнений, совокупность состоит из уравнений, которые не зависят друг от друга. Для каждого уравнения, входящего в совокупность, значение переменной x будет разным. А в системе уравнений значение переменной x удовлетворяет как первому уравнению, так и второму.

Решить совокупность уравнений означает найти множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Решим каждое уравнение совокупности Решение модульных уравнений 7 класспо-отдельности. Это обычные линейные уравнения, которые легко решаются:

Решение модульных уравнений 7 класс

Символ ⇔ как было ранее сказано означает равносильность. В данном случае он указывает на то, что все получающиеся совокупности равносильны друг другу.

Итак, мы получили корни 7 и −3. Поскольку эти два числа являются решениями совокупности Решение модульных уравнений 7 класс, то значит являются и решениями уравнения |x − 2| = 5.

В исходную совокупность можно включать условия, согласно которым был раскрыт модуль. В этом случае каждое уравнение вместе со своим условием обрамляется знаком системы.

Дополним предыдущую совокупность условиями, согласно которым был раскрыт модуль. К первому уравнению x − 2 = 5 добавим условие x − 2 ≥ 0 , а ко второму уравнению −x + 2 = 5 добавим условие x − 2

Решение модульных уравнений 7 класс

Решение каждого уравнения должно удовлетворять своему условию. Поэтому условия и уравнения обрамлены знáком системы.

Решим получившуюся совокупность с условиями. Условия являются неравенствами, которые тоже можно решать:

Решение модульных уравнений 7 класс

В первом случае получили корень 7 , который удовлетворяет своему условию x ≥ 2 . Во втором случае получили корень −3 , который удовлетворяет своему условию x .

Не следует бояться таких записей. Это лишь подробное решение, показывающее что откуда взялось. Чаще всего решение можно записать покороче.

Существует схема для сведéния в совокупность уравнения вида |x| = a . Выглядит эта схема так:

Решение модульных уравнений 7 класс

Данная схема легко позволяет свести уравнение с модулем в совокупность. Эту схему можно прочитать так: « Если выражение |x| равно a, то подмодульное выражение равно a или −a »

Квадратная скобка в совокупностях заменяет собой слово «или».

Например, уравнение |x| = 5 можно свести в совокупность, рассуждая так: если выражение |x| равно 5, то подмодульное выражение равно 5 или −5 .

Решение модульных уравнений 7 класс

А применительно к нашему предыдущему примеру можно рассуждать так: если |x − 2| равно 5 , то подмодульное выражение равно 5 или −5

Решение модульных уравнений 7 класс

Это та же самая совокупность, что и в прошлый раз. Убедитесь в этом, умножив обе части второго уравнения на −1.

В уравнениях где слева модуль, а справа число, мы будем чаще использовать именно такой способ записи совокупности. Он позволяет не прибегать к правилу раскрытия модуля, а сразу получить совокупность.

Но надо помнить, что эта схема будет работать только для уравнений вида |x| = a . То есть для уравнений, у которого слева модуль, а справа число.

Пример 2. Решить уравнение |2x − 1| = 3

Решение

У этого уравнения слева модуль, а справа число. Значит его можно свести в совокупность, воспользовавшись схемой Решение модульных уравнений 7 класс

Если выражение |2x − 1| равно 3, то подмодульное выражение 2x − 1 равно 3 или −3

Решение модульных уравнений 7 класс

Теперь решим каждое уравнение совокупности по отдельности:

Решение модульных уравнений 7 класс

Ответ: 2 и −1.

Пример 3. Решить уравнение |x + 2| − 3 = 8

Решение

В некоторых случаях прежде чем свести исходное уравнение в совокупность, его следует упростить.

Так, в данном случае −3 следует перенести в правую часть, изменив знак:

Решение модульных уравнений 7 класс

Получили уравнение |x + 2| = 11 . Если выражение |x + 2| равно 11, то подмодульное выражение x + 2 равно 11 или −11

Решение модульных уравнений 7 класс

Решим данную совокупность:

Решение модульных уравнений 7 класс

Ответ: 9 и −13.

Пример 4. Решить уравнение 4|x| + 4 = 2|x| + 10

Решение

Перенесём 2|x| из правой части в левую часть, а 4 перенесём из левой части в правую часть:

Разделим обе части получившегося уравнения на 2. Тогда получится простое уравнение с модулем:

Решение модульных уравнений 7 класс

Ответ: 3 и −3.

Пример 5. Решить уравнение Решение модульных уравнений 7 класс

Решение

Если выражение |2 − 5x 2 | равно 3, то подмодульное выражение 2 − 5x 2 равно 3 или −3

Решение модульных уравнений 7 класс

В обоих уравнениях перенесём 2 в правую часть, изменив знак:

Решение модульных уравнений 7 класс

В первом уравнении разделим обе части на −5. Во втором уравнении так же разделим обе части на −5. Тогда получим два квадратных уравнения

Решение модульных уравнений 7 класс

Первое уравнение не имеет корней, потому что квадрат любого числа положителен, а в данном случае он равен отрицательному числу. Корнями второго уравнения являются числа 1 и −1, поскольку вторая степень этих чисел равна единице.

Ответ: 1 и −1.

Пример 6. Решить уравнение |x + 6| + 4x = 5

Решение

Данное уравнение не является уравнением вида |x| = a , значит не получится воспользоваться схемой Решение модульных уравнений 7 класс.

Чтобы свести данное уравнение в совокупность, нужно сначала раскрыть его модуль, затем записать совокупность из получившихся уравнения.

Раскроем модуль |x + 6|

Решение модульных уравнений 7 класс

Если x + 6 ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 6 + 4x = 5

Если x + 6 , то модуль раскроется со знаком минус и тогда исходное уравнение примет вид − x − 6 + 4x = 5. Получим следующую совокупность:

Решение модульных уравнений 7 класс

Дальнейшее решение элементарно:

Решение модульных уравнений 7 класс

Из найденных корней только Решение модульных уравнений 7 классявляется корнем исходного уравнения, поскольку удовлетворяет условию x ≥ −6 . А корень Решение модульных уравнений 7 классне является корнем уравнения, поскольку не удовлетворяет условию x .

Ответ: Решение модульных уравнений 7 класс

Наиболее простой вид

Наиболее простой вид уравнения с модулем выглядит так:

где x — корень уравнения, a — произвольное число, бóльшее или рáвное нулю. То есть a ≥ 0

Если условие a ≥ 0 не выполнено, то уравнение |x|= a корней не имеет. Это следует из определения модуля. Действительно, модуль всегда неотрицателен.

Приведем несколько примеров уравнений вида |x| = a

Пример 1. Решить уравнение |x| = 2

Решение

В данном случае сразу видно, что корнями являются числа 2 и −2. Ведь если вместо x подставить эти числа, то получим верное равенство: |−2| = 2 и |2| = 2. Решение для этого уравнения можно записать, сведя его в совокупность:

«Если выражение |x| равно 2, то подмодульное выражение x равно 2 или −2«

Решение модульных уравнений 7 класс

Ответ: 2 и −2

Пример 2. Решить уравнение |−x| = 4

Решение

Если выражение |−x| равно 4, то подмодульное выражение равно 4 или −4

Решение модульных уравнений 7 класс

Умножим оба уравнения на −1

Решение модульных уравнений 7 класс

Ответ: −4 и 4.

Пример 3. Решить уравнение |x| = −7

В данном случае корней нет, поскольку модуль всегда неотрицателен. А в данном случае модуль равен отрицательному числу.

Если уравнение с модулем не имеет корней, обычно пишут что x принадлежит пустому множеству:

Напомним, что пустым называют множество, не имеющее элементов.

Модуль внутри модуля

Решение модульных уравнений 7 класс

В этом уравнении слева располагается модуль, который в свою очередь содержит внутри себя другой модуль, а справа уравнения располагается число. Такой вид уравнения с модулем можно решить, сведя его в совокупность с помощью схемы, которую мы рассмотрели ранее:

Решение модульных уравнений 7 класс

В нашем случае если выражение Решение модульных уравнений 7 классравно 9, то подмодульное выражение |2 + x| + 3 равно 9 или −9

Решение модульных уравнений 7 класс

В получившейся совокупности имеется два уравнения с модулем. Эти уравнения тоже в свою очередь следует свести в совокупность. Но сначала немного упростим эти уравнения. В первом и во втором уравнении перенесем 3 в правую часть, изменив знак. Тогда получим:

Решение модульных уравнений 7 класс

Теперь сведём эти уравнения в совокупности. Первое уравнение распадётся на следующую совокупность:

Решение модульных уравнений 7 класс

Сразу решим совокупность Решение модульных уравнений 7 класс. Первый корень равен 4, второй −8.

Решение модульных уравнений 7 класс

Теперь решим второе уравнение |2 + x| = −12 . Но замечаем, что его правая часть равна отрицательному числу. Это уравнение не имеет корней, потому что модуль не может равняться отрицательному числу.

Значит уравнение Решение модульных уравнений 7 классимеет корни 4 и −8 . Проверим эти корни, подставив их в исходное уравнение Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

В данном случае оба корня удовлетворяют исходному уравнению.

Ответ: 4 и −8 .

Вообще, уравнение с модулем внутри которого содержится другой модуль, тоже решается различными способами. Какой способ использовать зависит от самогó уравнения. Решим например следующее уравнение:

Решение модульных уравнений 7 класс

Здесь уже нельзя использовать схему Решение модульных уравнений 7 класспотому что слева располагается не только модуль, но и переменная x . Конечно, переменную x можно перенести в правую часть, и тогда можно будет свести данное уравнение в совокупность:

Решение модульных уравнений 7 класс

Но тогда справа появляется переменная x, на которую нужно будет вводить дополнительное ограничение, чтобы правая часть уравнения не стала отрицательной. Такой способ решения мы рассмотрим позже. А пока решим исходное уравнение с помощью правила раскрытия модуля.

Чтобы раскрыть модули данного уравнения нужно сначала определиться где внешний и где внутренний модуль.

В уравнении Решение модульных уравнений 7 классвнешним модулем является полностью левая часть Решение модульных уравнений 7 класс, а внутренним модулем — выражение Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Значение внешнего модуля зависит от внутреннего модуля, и раскрываться внешний модуль будет исходя от результата который получился в результате вычисления его подмодульного содержимого.

Например, если x = 3 , то внутренний модуль |3 − x| примет значение 0, и в результате всё подмодульное выражение внешнего модуля станет равно −2 . А это значит что внешний модуль будет раскрываться с минусом.

||3 − x| − x + 1| = ||3 − 3| − 3 + 1| = ||0| − 3 + 1| = |−2| = −(−2) = 2

А если например x = −2 , то внутренний модуль |3 − x| примет значение 5, и в результате всё подмодульное выражение внешнего модуля станет равно 8. А это значит что внешний модуль будет раскрываться с плюсом:

||3 − x| − x + 1| = ||3 − (−2)| − (−2) + 1| = ||5| − (−2) + 1| = | 8 |=8

Поэтому решение будем начинать с раскрытия внутреннего модуля.

Если внутренний модуль раскроется с плюсом, то есть если 3 − x ≥ 0 (что равносильно неравенству x ≤ 3 ), то исходное уравнение примет вид:

Решение модульных уравнений 7 класс

Теперь уравнение имеет только внешний модуль. Решим его раскрыв модуль:

Решение модульных уравнений 7 класс

Если −2x + 4 ≥ 0, то:

Решение модульных уравнений 7 класс

Сейчас нас интересуют только те значения x при которых внутренний модуль раскрывается с плюсом, а это произойдет при условии x ≤ 3. Поэтому для наглядности рядом с найденным корнем указано, что он удовлетворяет условию x ≤ 3

Решаем далее. Если −2x + 4 , то:

Решение модульных уравнений 7 класс

Несмотря на то, что оба найденных корня удовлетворяют уравнению |−2x+4|=6−x , мы исключаем корень Решение модульных уравнений 7 классиз решений, потому что нас сейчас интересуют только те значения x, при которых внутренний модуль изначального уравнения раскрывается с плюсом. Поэтому рядом с корнем Решение модульных уравнений 7 классуказано, что он не удовлетворяет условию x ≤ 3 .

Итак, если внутренний модуль раскрывается с плюсом, исходное уравнение принимает вид |−2x + 4| = 6 − x и корнем этого уравнения является число −2 .

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда 3 − x (что равносильно неравенству x > 3 ). Внутренний модуль будет раскрываться с минусом при всех значениях x больших 3.

Если внутренний модуль раскроется с минусом, то исходное уравнение примет вид:

Решение модульных уравнений 7 класс

Модуль −2 равен 2 . Тогда получаем простейшее линейное уравнение, корень которого равен 4

Решение модульных уравнений 7 класс

Получили корень 4 , который удовлетворяет условию x > 3 .

В итоге корнями уравнения являются числа −2 и 4.

Ответ: 2 и 4.

Пример 3. Решить уравнение ||x − 1| − 7| = 10

Решение

Слева располагается модуль, а справа число, значит можно применить схему:Решение модульных уравнений 7 класс

В данном случае если выражение ||x − 1| 7| равно 10, то подмодульное выражение |x 1| 7 равно 10 или 10. Получится совокупность из двух уравнений:

Решение модульных уравнений 7 класс

Упростим получившиеся уравнения. Перенесём число −7 в обоих уравнениях в правую часть, изменив знак:

Решение модульных уравнений 7 класс

Второе уравнение корней не имеет. Первое уравнение распадется на совокупность Решение модульных уравнений 7 класс, корни которой 18 и −16.

Решение модульных уравнений 7 класс

Ответ: 18 и −16 .

Решим это же уравнение с помощью раскрытия модулей. Начнем с внутреннего модуля.

Если x − 1 ≥ 0 (что равносильно x ≥ 1 ), то исходное уравнение примет вид:

Решение модульных уравнений 7 класс

Решим получившееся уравнение раскрыв модуль:

Решение модульных уравнений 7 класс

Далее решаем уравнение для случаев когда x − 8 ≥ 0 и x − 8

Решение модульных уравнений 7 класс

Сейчас нас интересуют те значения, при которых внутренний модуль исходного уравнения раскрывается с плюсом. А это будет при условии, что x ≥ 1 . Этому условию удовлетворяет только значение 18 , поэтому мы пометили его зеленой галочкой для наглядности.

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда x − 1 (или что равносильно неравенству x ).

Если x − 1 , то исходное уравнение примет вид:

Решение модульных уравнений 7 класс

Решим получившееся уравнение раскрыв модуль:

Решение модульных уравнений 7 класс

Далее решаем уравнение для случаев когда −x − 6 ≥ 0 и −x − 6

Решение модульных уравнений 7 класс

Из найденных корней только −16 удовлетворяет условию x .

В итоге корнями уравнения ||x − 1| − 7| = 10 являются числа 18 и −16 .

Видно, что с помощью схемы Решение модульных уравнений 7 классданное уравнение решилось легче и быстрее, чем способом раскрытия модулей.

Слева модуль, а справа выражение с переменной

Решим следующее уравнение с модулем:

Здесь так же применима схема:

Решение модульных уравнений 7 класс

То есть, если выражение |4x − 3| равно 3x, то подмодульное выражение 4x − 3 должно равняться 3x или −3x.

Решение модульных уравнений 7 класс

Но в исходном уравнении переменная x содержится не только под знáком модуля, но и в правой части. Нам пока неизвестно какое значение примет переменная x . Если x примет отрицательное значение, то правая часть станет полностью отрицательной. В этом случае корней не будет, потому что модуль не может равняться отрицательному числу.

Поэтому, если мы хотим решить данное уравнение, то при сведéнии его в совокупность, дополнительно следует ввести ограничение в виде условия 3x ≥ 0 . Это будет означать, что правая часть уравнения |4x − 3| = 3x должна быть больше либо равна нулю:

Решение модульных уравнений 7 класс

Совокупность и условие обрамлены знаком системы, потому что решения совокупности должны удовлетворять условию 3x ≥ 0.

Итак, решим совокупность. Условие 3x ≥ 0 является неравенством, которое тоже можно решить:

Решение модульных уравнений 7 класс

Получившиеся корни можно подставить в условие x ≥ 0 и посмотреть выполняется ли оно. Если выполняется, то найденные корни удовлетворяют уравнению. В данном случае при подстановке обеих корней в неравенство, оно выполняется. Проверка также показывает, что корни удовлетворяют уравнению:

Решение модульных уравнений 7 класс

Пример 2. Решить уравнение |2x − 1| = 5x − 10

Решение

Решим это уравнение таким же образом, как и предыдущее. Введём условие, требующее чтобы правая часть была больше либо равна нулю:

Решение модульных уравнений 7 класс

В данном случае только значение 3 удовлетворяет условию x ≥ 2 . Оно же является единственным корнем исходного уравнения. Проверка показывает это:

Решение модульных уравнений 7 класс

А число Решение модульных уравнений 7 классне удовлетворяет условию x ≥ 2 и не является корнем исходного уравнения. Проверка также показывает это:

Решение модульных уравнений 7 класс

Видим, что модуль стал равен отрицательному числу, а это противоречит определению модуля и нашему условию x ≥ 2 .

Пример 3. Решить уравнение Решение модульных уравнений 7 класс

Решение

Это уравнение мы решили, когда учились решать уравнения с модулем внутри которых другой модуль. Теперь данное уравнение можно решить, сведя его в совокупность.

Для начала перенесём x в правую часть, изменив знак:

Решение модульных уравнений 7 класс

Теперь сведём данное уравнение в совокупность. Дополнительно введём условие в виде неравенства 6 − x ≥ 0

Решение модульных уравнений 7 класс

В левой части первого уравнения оставим модуль, остальные члены перенесём в правую часть. Тоже самое сделаем и со вторым уравнением. Также будем решать неравенство 6 − x ≥ 0 , оно позволит в конце проверять найденные корни на соответствие:

Решение модульных уравнений 7 класс

Решим первое уравнение. Оно распадётся на следующую совокупность:

Решение модульных уравнений 7 класс

Получились корни −2 и 8 . Из них только −2 удовлетворяет условию x ≤ 6 .

Теперь решим второе уравнение. Оно является уравнением, содержащим переменную в правой части. При сведении его в совокупность дополним его условием −7 + 2x ≥ 0

Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

При решении второго уравнения получились корни Решение модульных уравнений 7 класси 4. Прежде чем сверять их с условием x ≤ 6 следует сверить их с условием Решение модульных уравнений 7 класспод которое решалось уравнение |3 − x| = −7 + 2 x . Условию Решение модульных уравнений 7 классудовлетворяет только корень 4 .

В итоге корнями исходного уравнения Решение модульных уравнений 7 классявляются числа −2 и 4.

Пример 4. Решить уравнение |4x + 20| = −6x

Решение

На первый взгляд покажется, что данное уравнение не имеет решений, потому что правая часть отрицательна. Но это не совсем так. Правая часть содержит переменную x, которая может принять отрицательное значение или ноль, и это приведёт к тому что правая часть станет положительной либо равной нулю. А такое уравнение имеет право на существование.

В данном случае мы решим это уравнение, сведя его в совокупность. Но при этом укажем, что правая часть должна быть больше или равна нулю:

Решение модульных уравнений 7 класс

Из найденных корней только корень −2 удовлетворяет исходному уравнению. Также он удовлетворяет нашему условию x ≤ 0 .

Ответ: −2.

Когда обе части — модули

Решим следующее уравнение:

Обе части этого уравнения являются модулями. Раскроем эти модули. Будем учитывать все возможные случаи при их раскрытии.

Случай 1. Если x + 7 ≥ 0 и 1 + 3x ≥ 0 , то модули в обеих частях раскроются со знаком плюс и тогда исходное уравнение примет вид:

Это простейшее линейное уравнение. Решим его:

Решение модульных уравнений 7 класс

Случай 2. Если x + 7 и 1 + 3x то модули в обеих частях раскроются со знаком минус и тогда исходное уравнение примет вид:

Раскроем скобки, получим:

Замечаем, что если умножить обе части этого уравнения на −1 , то получается уравнение x + 7 = 1 + 3 x . А это уравнение мы получали в результате раскрытия модулей со знаком плюс.

То есть уравнения x + 7 = 1 + 3x и −x − 7 = −1 − 3x являются равносильными, а значит имеют одни и те же корни. Убедимся в этом, решив уравнение −x − 7 = −1 − 3x

Решение модульных уравнений 7 класс

Поэтому, раскрыв модули со знаком плюс, нет необходимости раскрывать их со знаком минус, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Следующий случай это когда x + 7 ≥ 0 и 1 + 3x . Тогда исходное уравнение примет вид x + 7 = −1 − 3x. Найдём корень этого уравнения:

Решение модульных уравнений 7 класс

И последний случай это когда x + 7 и 1 + 3x ≥ 0 . Тогда уравнение примет вид −x − 7 = 1 + 3 x . Если умножить это уравнение на −1 , то получим уравнение x + 7 = −1 − 3x. А это уравнение мы получали, когда рассматривали предыдущий случай (случай x + 7 ≥ 0 и 1 + 3x ).

Следовательно, уравнение −x − 7 = 1 + 3x равносильно предыдущему уравнению x + 7 = −1 − 3 x . Убедимся в этом решив уравнение −x − 7 = 1 + 3x

Решение модульных уравнений 7 класс

Значит раскрыв левую часть со знаком плюс, а правую часть со знаком минус, нет необходимости раскрывать левую часть со знаком минус, а правую часть со знаком плюс, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Вообще, если в уравнении обе части являются модулями как в данном примере, то это уравнение можно свести в следующую совокупность:

Решение модульных уравнений 7 класс

В этой конструкции уравнение вида |a| = |b| сведено в совокупность из двух уравнений a = b и a = −b . Видно что первое уравнение получается путем раскрытия обоих модулей со знаком плюс, а второе уравнение — путем раскрытия модуля |a| со знаком плюс, а модуля |b| — со знаком минус.

Важно. Данная схема работает только тогда, когда обе части являются модулями без посторонних членов. Проще говоря, если будет дано уравнение, например |a| = |b| + c , то приведенную схему использовать нельзя.

Пример 2. Решить уравнение |2 − 3x| = |x + 5|

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Решение модульных уравнений 7 класс

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс, во втором уравнении — модуль |2 − 3x| будет раскрыт со знаком плюс, а модуль |x + 5| со знаком минус:

Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Ответ: Решение модульных уравнений 7 класси Решение модульных уравнений 7 класс

Пример 3. Решить уравнение |x 2 − 13x + 35|=|35 − x 2 |

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Решение модульных уравнений 7 класс

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс. Во втором уравнении — модуль |x 2 − 13x + 35| будет раскрыт со знаком плюс, а модуль |35 − x 2 | со знаком минус:

Решение модульных уравнений 7 класс

Приведём подобные члены в обоих уравнениях:

Решение модульных уравнений 7 класс

Первое уравнение является неполным квадратным. Решим его, вынеся x за скобки. Второе уравнение решается элементарно:

Решение модульных уравнений 7 класс

Ответ: Решение модульных уравнений 7 класс, Решение модульных уравнений 7 класс, 0.

Когда решение — числовой промежуток

Нередко приходиться решать уравнения с модулем, где корнями являются не один или два числа, а числовой промежуток. Таковым, например, является уравнение:

Раскроем модуль этого уравнения:

Решение модульных уравнений 7 класс

Если раскрыть модуль со знаком плюс, то получается уравнение 5x + 3 = −5x − 3 . Решим его:

Решение модульных уравнений 7 класс

А если раскрыть модуль со знаком минус, то получится уравнение −5x − 3 = −5x − 3 . В этом уравнении обе части являются одинаковыми, а значит данное равенство является тождеством. Оно будет верно при любом значении x . Значит корнями уравнения −5x − 3 = −5x − 3 являются все числа от минус бесконечности до плюс бесконечности:

Но надо помнить про условия, согласно которым были раскрыты модули. В первом случае мы получили корень Решение модульных уравнений 7 класс. Он будет верен только при условии что Решение модульных уравнений 7 класс. Это условие соблюдено. Проверка также показывает что корень подходит:

Решение модульных уравнений 7 класс

Значит один из корней уравнений равен Решение модульных уравнений 7 класс

Во втором случае мы получили множество корней от минус бесконечности до плюс бесконечности. Но это будет верно только при условии что Решение модульных уравнений 7 класс

Например, если взять любое число из промежутка (−∞; +∞) , но которое не будет удовлетворять условию Решение модульных уравнений 7 класс, то это число не будет обращать наше уравнение в верное равенство.

Например, число 2 принадлежит промежутку (−∞; +∞), но не удовлетворяет условию Решение модульных уравнений 7 класс, а значит число 2 не является корнем исходного уравнения. Проверка также покажет это:

Решение модульных уравнений 7 класс

А если взять к примеру число −5 , то оно будет принадлежать промежутку (−∞; +∞) и удовлетворять условию Решение модульных уравнений 7 класс, а значит будет обращать исходное уравнение в верное равенство:

Решение модульных уравнений 7 класс

Поэтому ответ надо записать так, чтобы были выполнены оба условия Решение модульных уравнений 7 класси Решение модульных уравнений 7 класс. Для наглядности нарисуем координатную прямую и обозначим её как x

Решение модульных уравнений 7 классОтметим на ней наш первый корень Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Раскрыв модуль со знаком минус и решив получившееся уравнение, мы получили в ответе множество всех чисел от минус бесконечности до плюс бесконечности, но при этом было дано условие Решение модульных уравнений 7 класс. Значит более точным ответ в этом случае будет таким:

Корнями уравнения −5x − 3 = −5x − 3 при условии Решение модульных уравнений 7 классявляются все числа от минус бесконечности до Решение модульных уравнений 7 класс

Значит на координатной прямой нужно заштриховать область слева от числа Решение модульных уравнений 7 класс. Они будут иллюстрировать числа, меньшие Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Число Решение модульных уравнений 7 класстоже является верным корнем исходного уравнения. Он был получен при раскрытии модуля со знаком плюс. Поэтому на координатной прямой пустой кружок нужно закрасить. Так мы включим число Решение модульных уравнений 7 классво множество решений:

Решение модульных уравнений 7 класс

Тогда окончательный ответ будет выглядеть так:

Решение модульных уравнений 7 класс

Ответ: Решение модульных уравнений 7 класс

Также, можно решить это уравнение сведя его в совокупность, дополнительно указав, что правая часть должна быть больше либо равна нулю:

Решение модульных уравнений 7 класс

Пример 2. Решить уравнение |2x − 3| = 3 − 2x

Решение

Решение модульных уравнений 7 класс

Решим исходное уравнение для случаев когда 2x − 3 ≥ 0 и 2x − 3

Решение модульных уравнений 7 класс

Решение модульных уравнений 7 класс

Ответ: Решение модульных уравнений 7 класс

Использование координатной прямой

Рассмотрим ещё один способ решения элементарных уравнений с модулем — с помощью координатной прямой. Этот способ используется редко, но знать о нём не помешает.

Решим наше самое первое уравнение |x − 2| = 5 с помощью координатной прямой. Напомним, что корнями этого уравнения были числа 7 и −3.

Модуль есть расстояние от начала координат до точки A . Либо расстояние между двумя числами на координатной прямой.

Расстояние между двумя числами выражается в виде разности |x1x2| , где x1 — первое число, x2 — второе число.

Если внимательно посмотреть на уравнение |x − 2|= 5 , то можно увидеть что его левая часть это расстояние от x до 2 (или от 2 до x) и это расстояние равно 5. Отмéтим на координатной прямой число x и число 2

Решение модульных уравнений 7 класс

Правая часть уравнения |x − 2|= 5 говорит о том, что расстояние от x до 2 составляет пять единиц:

Решение модульных уравнений 7 класс

Если расстояние от x до 2 равно 5, то и расстояние от 2 до x тоже равно 5. Это позволяет отсчитать пять целых шагов от числа 2 к числу x и таким образом узнать значение x

Решение модульных уравнений 7 класс

Видно, что отсчитав пять шагов влево мы попали в точку с координатой −3. А это один из корней, который мы находили для уравнения |x − 2|= 5.

Но пять целых шагов от числа 2 можно отсчитать не только влево, но и вправо:

Решение модульных уравнений 7 класс

Если отсчитать пять целых шагов вправо, то попадём в точку с координатой 7. Это тоже был корень уравнения |x − 2|= 5

Решение модульных уравнений 7 класс

Несколько модулей в одной части

Решим следующее уравнение:

Это уравнение содержит два модуля в левой части. Чтобы решить данное уравнение нужно раскрыть его модули. Рассмотреть нужно каждый из случаев:

  • когда оба модуля больше либо равны нулю;
  • когда оба модуля меньше нуля;
  • когда первый модуль больше либо равен нулю, а второй модуль меньше нуля;
  • когда первый модуль меньше нуля, а второй модуль больше либо равен нулю.

Не будем комментировать каждый случай, а сразу приведём решение:

Решение модульных уравнений 7 класс

Первые два случая корней не дали. В третьем случае нашелся корень 3, но он не удовлетворяет условиям x − 5 ≥ 0 и x , поэтому не является корнем исходного уравнения.

В четвёртом случае нашёлся корень 2, который удовлетворяет условиям x − 5 и x ≥ 0 . Также он удовлетворяет исходному уравнению.

Заметно, что такой способ решения уравнения неудобен. Если модулей в уравнении будет три, четыре или более, то придётся рассматривать намного больше случаев. Человек запутавшись, может забыть рассмотреть какой-то из случаев, и получится что уравнение решено не полностью.

Поэтому такой вид уравнения как в данном примере удобнее решать методом интервалов. Об этом мы поговорим в следующем уроке.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Алгебра

План урока:

Видео:Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

Модуль числа

Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:

|2,536| = |– 2,536| = 2,536

Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:

Именно такое определение обычно и применяется в математике.

Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:

Также модуль возникает при извлечении квадратного корня из четной степени числа:

В частности, если n = 1, получим формулу:

Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:

Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:

В результате получилась «галочка».

Пример. Постройте график ф-ции у = |х 2 – 4х + 3|

Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х 2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:

Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х 2 – 4х + 3|, надо перевернуть эту часть графика:

Видео:Уравнение с модулем. 7 класс. Модуль. часть 4Скачать

Уравнение с модулем. 7 класс. Модуль. часть 4

Решение уравнений с модулем

Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид

где b – какое-то число, а у(х) – произвольная ф-ция.

Если b 10 + 97x 4 – 12,56х 3 + 52х 2 + 1001х – 1234| = – 15

Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.

Ответ: корни отсутствуют.

Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.

Пример. Решите ур-ние

Ясно, что подмодульное выр-ние равно нулю:

Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:

То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.

Пример. Решите ур-ние

Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.

Пример. Решите ур-ние

Решение. Исходное ур-ние разбивается на два других ур-ния:

10х + 5 = 7 или 10х + 5 = – 7

10х = 2 или 10х = – 12

х = 0,2 или х = – 1,2

Пример. Найдите корни ур-ния

Решение. Снова заменим исходное равенство на два других:

x 2 – 2х – 4 = 4 или x 2 – 2х – 4 = – 4

Имеем два квадратных ур-ния. Решим каждое из них:

D = b 2 – 4ас = (– 2) 2 – 4•1•(– 8) = 4 + 32 = 36

Нашли корни (– 2) и 4. Решаем второе ур-ние:

х = 0 или х – 2 = 0

Получили ещё два корня: 0 и 2.

Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:

Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.

Пример. Решите ур-ние

|x 2 + 2x– 1| = |х + 1|

Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:

x 2 + 2x– 1 = х + 1 или x 2 + 2x– 1 = – (х + 1)

х 2 + х – 2 = 0 или х 2 + 3х = 0

Решим 1-ое ур-ние:

D = b 2 – 4ас = 1 2 – 4•1•(– 2) = 1 + 8 = 9

Теперь переходим ко 2-омуур-нию:

х = 0 или х + 3 = 0

Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.

Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.

Пример. Найдите решение уравнения, содержащего модуль:

|х 2 + 3,5х – 20| = 4,5х

Решение. Рассмотрим два отдельных равенства:

х 2 + 3,5х – 20 = 4,5х илих 2 + 3,5х – 20 = – 4,5х

х 2 – х – 20 = 0 или х 2 + 8х – 20 = 0

Решим каждое из полученных квадратных ур-ний.

D = b 2 – 4ас = 1 2 – 4•1•(– 20) = 1 + 80 = 81

D = b 2 – 4ас = 8 2 – 4•1•(– 20) = 64 + 80 = 144

Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:

Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.

Мы рассмотрели три случая, когда ур-ние имеет вид:

Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.

Пример. Найдите корни ур-ния

Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:

Если отметить обе точки на прямой, то они образуют на ней 3 интервала:

Исследуем ур-ние на каждом из полученных промежутков.

Так как при х 2 + bx + c = 0

Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.

Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.

Пример. Решите ур-ние

и найдите его корни при значении параметра а, равном 3.

Решение. Вынесем множитель х за скобки:

х = 0 или х – 2а = 0

Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:

при а = 3х = 2•3 = 6

Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.

Пример. Решите ур-ние

р 2 х – 3рх = р 2 – 9

Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:

рх(р – 3) = (р – 3)(р + 3)

Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.

Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во

0•х•(0 – 3) = (0 – 3) (3 – 0)

Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.

Если р – 3 = 0, то есть р = 3, получится следующее

Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.

Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим

В этом случае ур-ние имеет единственный корень.

Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.

Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.

Пример. Сколько корней имеет ур-ние

при различных значениях параметра b.

Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х 2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:

D = b 2 – 4ас = (– 6) 2 – 4•1•5 = 36 + 20 = 16

Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:

Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:

3 2 – 6•3 + 5 = 9 – 18 + 5 = – 4

Теперь построим квадратичную ф-цию:

Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:

Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:

При b 4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.

Ответ: нет корней при b 4; 3 корня при b = 4; 4 корня при 0 4 – (а + 2)х 2 + 3а – 3 = 0

имеет ровно 4 корня?

Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х 2 :

у 2 – (а + 2)у + 3а – 3 = 0 (1)

Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х 2 = у1 и х 2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны

Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины

Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние

вовсе не будет иметь решений, и тогда останется не более 2 корней.

Итак, решим ур-ние (1):

у 2 – (а + 2)у + 3а – 3 = 0

D = b 2 – 4ас = (– (а + 2)) 2 – 4•1•(3а – 3) = (а + 2) 2 – 12 а + 12 =

= а 2 + 4а + 4 – 12а + 12 = а 2 – 8а + 16 = а 2 – 2•4•а + 4 2 = (а – 4) 2

Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4) 2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.

Извлечем корень из дискриминанта:

Корни ур-ния (1) можно вычислить по формулам:

И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:

Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство

Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.

Итак, при условии, что а 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение

можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).

Пример. При каких параметрах а у ур-ния

х 2 – 2(а + 1)х + а 2 + 2а – 3 = 0

существует два корня, которые принадлежат интервалу (– 5; 5)?

Решение. Данное ур-ние является квадратным. Найдем его дискриминант:

D = b 2 – 4ас = (– 2(а + 1)) 2 – 4•1•( а 2 + 2а – 3) = 4(а 2 + 2а + 1) – 4(а 2 + 2а – 3) =

= 4(а 2 + 2а + 1 – а 2 – 2а + 3) = 4•4 = 16

Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам

Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:

Значит, должны выполняться два нер-ва

х1>– 5и х2 – 5 и а + 3 – 4 и а 1 (-1)

🎦 Видео

Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

Модуль в модуле в уравнении. Алгебра 7 класс.Скачать

Модуль в модуле в уравнении. Алгебра 7 класс.

Уравнения с модулемСкачать

Уравнения с модулем

Модуль числа. Практическая часть. 6 класс.Скачать

Модуль числа. Практическая часть. 6 класс.

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать

Уравнения с модулем. Часть 2  | Математика | TutorOnline

Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.Скачать

Решение уравнения с модулем |x+8|+|x-3|+|x+2|=1.

Очень сложное уравнение с модулем. Алгебра 7 класс.Скачать

Очень сложное уравнение с модулем. Алгебра 7 класс.

Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Модуль выражения при решении уравнений. Алгебра 7 класс.Скачать

Модуль выражения при решении уравнений. Алгебра 7 класс.

Уравнение с модулемСкачать

Уравнение с модулем

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Алгебра 7 класс Уравнения с модулемСкачать

Алгебра 7 класс Уравнения с модулем

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении
Поделиться или сохранить к себе: