Решение матричных уравнений с комплексными числами онлайн

Портал ТОЭ

Использование калькулятора

В каждое поле ввода следует записать значения матрицы построчно через пробел, разделителем десятичной части должна быть точка. Например:

Поддерживаются комплексные числа, для этого стоит их записывать без пробелов, например -2+4.5i или 1.6*e^(1.2i) . Подробнее правила ввода комплексных чисел можно посмотреть на странице калькулятора комплексных чисел. Кстати, в качестве элемента матрицы может выступать целое выражение, в том числе с комплексными числами в алгебраической и показательной форме записи, главное, чтобы внутри выражения не было пробелов.

В калькуляторе возможно использование констант, математических функций, дополнительных операций и более сложных выражений, ознакомиться с этими возможностями вы можете на странице общих правил использования калькуляторов на этом сайте.

Можно использовать следующие операторы:

ОператорОписание
+Сложение матриц
Вычитание матриц
*Поэлементное умножение матриц
/Поэлементное деление матриц
Матричное умножение
÷Матричное деление
^Поэлементное возведение в степень
^^Матричное возведение в степень
SРешение линейных алгебраических уравнений

Подробное описание операторов

Сложение и вычитание матриц происходит поэлементно, т.е. каждый элемент левой матрицы складывается (вычитается) с соответствующим элеметом правой матрицы. При этом размерность матриц должна быть одинаковой.

Поэлементное умножение и деление происходит аналогично сложению и вычитанию.

При матричном умножение требуется, что бы количество столбцов левой матрицы было равно количеству строк правой матрицы. Элемент (x_) определяется, как сумма произведений элементов столбца (j) первой матрицы на элементы строки (i) второй матрицы, т.е. [x_ = sumlimits_^n a_ b_,] где (a_) – элемент первой матрицы в строке (k) и столбце (j), (b_) – соответствующий элемент во второй матрице, (n) – количество столбцов первой матрицы и строк второй. Результирующая матрица имеет размерность (itimes j).

При поэлементном возведении в степень вместо второй матрицы должно быть просто число. Каждый элемент матрицы возводится в степень, равную этому числу.

Матричное возведение в степень (n) – это матричное умножение матрицы саму на себя (n) раз. То есть во второе поле ввода должно быть вписано целое число. Для получения обратной матрицы введите в правую часть «(-1)»

Решение линейных уравнений – в этом режиме первая матрица содержит коэффициенты уравнения в левой части, вторая – в правой части. Например, чтобы решить систему уравнений [leftlbracebegin2x+3y&=5;\10x-y&=6,endright.] нужно ввести в левое поле ввода: в правое:

Сайт находится в разработке, некоторые страницы могут быть недоступны.

Новости

07.07.2016
Добавлен калькулятор для решения систем нелинейных алгебраических уравнений: перейти.

30.06.2016
На сайте реализован адаптивный дизайн, страницы адекватно отображаются как на больших мониторах, так и на мобильных устройствах.

РГРОнлайн.ru – мгновенное решение работ по электротехнике онлайн.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Решение матричных уравнений с комплексными числами онлайн

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

Решение матричных уравнений с комплексными числами онлайн

© Контрольная работа РУ — примеры решения задач

Видео:Решение уравнений с комплексными числамиСкачать

Решение уравнений с комплексными числами

Матричный метод онлайн

В нашем калькуляторе вы бесплатно найдете решение систем линейных уравнений матричным методом онлайн с подробным решением и даже с комплексными числами. Все вспомогательные операции, задействованные в решении, могут быть посчитаны отдельно.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции.

О методе

Чтобы решить систему матричным методом, нужно выполнить следующие шаги.

  1. Выписывается основная матрица и находится обратная к ней (в случае, если она не вырожденная).
  2. Умножается полученная обратная матрица на вектор-столбец решений.
  3. Результат умножения является решением системы линейных уравнений.

Чтобы лучше всего понять матричный метод решения систем, введите любой пример и изучите полученный ответ.

🌟 Видео

Решение матричных уравненийСкачать

Решение матричных уравнений

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Математика это не ИсламСкачать

Математика это не Ислам

Уравнение с комплексными числамиСкачать

Уравнение с комплексными числами

Биквадратное уравнение. Комплексные корни.Скачать

Биквадратное уравнение. Комплексные корни.

Комплексные числа: начало. Высшая математика или школа?Скачать

Комплексные числа: начало. Высшая математика или школа?

§29 Решение матричного уравненияСкачать

§29 Решение матричного уравнения

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷

Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКАСкачать

комплЕксные ЧИСЛА решение примеров МАТЕМАТИКА

Тригонометрическая форма комплексного числаСкачать

Тригонометрическая форма комплексного числа

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.
Поделиться или сохранить к себе: