Решение матричного уравнения с параметром

Решение матричных уравнений

Финальная глава саги.

Линейная алгебра и, в частности, матрицы — это основа математики нейросетей. Когда говорят «машинное обучение», на самом деле говорят «перемножение матриц», «решение матричных уравнений» и «поиск коэффициентов в матричных уравнениях».

Понятно, что между простой матрицей в линейной алгебре и нейросетью, которая генерирует котов, много слоёв усложнений, дополнительной логики, обучения и т. д. Но здесь мы говорим именно о фундаменте. Цель — чтобы стало понятно, из чего оно сделано.

Краткое содержание прошлых частей:

  • Линейная алгебра изучает векторы, матрицы и другие понятия, которые относятся к упорядоченным наборам данных. Линейной алгебре интересно, как можно трансформировать эти упорядоченные данные, складывать и умножать, всячески обсчитывать и находить в них закономерности.
  • Вектор — это набор упорядоченных данных в одном измерении. Можно упрощённо сказать, что это последовательность чисел.
  • Матрица — это тоже набор упорядоченных данных, только уже не в одном измерении, а в двух (или даже больше).
  • Матрицу можно представить как упорядоченную сумку с данными. И с этой сумкой как с единым целым можно совершать какие-то действия. Например, делить, умножать, менять знаки.
  • Матрицы можно складывать и умножать на другие матрицы. Это как взять две сумки с данными и получить третью сумку, тоже с данными, только теперь какими-то новыми.
  • Матрицы перемножаются по довольно замороченному алгоритму. Арифметика простая, а порядок перемножения довольно запутанный.

И вот наконец мы здесь: если мы можем перемножать матрицы, то мы можем и решить матричное уравнение.

❌ Никакого практического применения следующего материала в народном хозяйстве вы не увидите. Это чистая алгебра в несколько упрощённом виде. Отсюда до практики далёкий путь, поэтому, если нужно что-то практическое, — посмотрите, как мы генерим Чехова на цепях Маркова.

Видео:Найти ранг матрицы при всех значениях параметраСкачать

Найти ранг матрицы при всех значениях параметра

Что такое матричное уравнение

Матричное уравнение — это когда мы умножаем известную матрицу на матрицу Х и получаем новую матрицу. Наша задача — найти неизвестную матрицу Х.

Решение матричного уравнения с параметром

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Шаг 1. Упрощаем уравнение

Вместо известных числовых матриц вводим в уравнение буквы: первую матрицу обозначаем буквой A, вторую — буквой B. Неизвестную матрицу X оставляем. Это упрощение поможет составить формулу и выразить X через известную матрицу.

Решение матричного уравнения с параметромПриводим матричное уравнение к упрощённому виду

Видео:Лекция 8. Решение матричных уравненийСкачать

Лекция 8. Решение матричных уравнений

Шаг 2. Вводим единичную матрицу

В линейной алгебре есть два вспомогательных понятия: обратная матрица и единичная матрица. Единичная матрица состоит из нулей, а по диагонали у неё единицы. Обратная матрица — это такая, которая при умножении на исходную даёт единичную матрицу.

Можно представить, что есть число 100 — это «сто в первой степени», 100 1

И есть число 0,01 — это «сто в минус первой степени», 100 -1

При перемножении этих двух чисел получится единица:
100 1 × 100 -1 = 100 × 0,01 = 1.

Вот такое, только в мире матриц.

Зная свойства единичных и обратных матриц, делаем алгебраическое колдунство. Умножаем обе известные матрицы на обратную матрицу А -1 . Неизвестную матрицу Х оставляем без изменений и переписываем уравнение:

А -1 × А × Х = А -1 × В

Добавляем единичную матрицу и упрощаем запись:

А -1 × А = E — единичная матрица

E × Х = А -1 × В — единичная матрица, умноженная на исходную матрицу, даёт исходную матрицу. Единичную матрицу убираем

Х = А -1 × В — новая запись уравнения

После введения единичной матрицы мы нашли способ выражения неизвестной матрицы X через известные матрицы A и B.

💡 Смотрите, что произошло: раньше нам нужно было найти неизвестную матрицу. А теперь мы точно знаем, как её найти: нужно рассчитать обратную матрицу A -1 и умножить её на известную матрицу B. И то и другое — замороченные процедуры, но с точки зрения арифметики — просто.

Видео:8 класс, 39 урок, Задачи с параметрамиСкачать

8 класс, 39 урок, Задачи с параметрами

Шаг 3. Находим обратную матрицу

Вспоминаем формулу и порядок расчёта обратной матрицы:

  1. Делим единицу на определитель матрицы A.
  2. Считаем транспонированную матрицу алгебраических дополнений.
  3. Перемножаем значения и получаем нужную матрицу.

Собираем формулу и получаем обратную матрицу. Для удобства умышленно оставляем перед матрицей дробное число, чтобы было проще считать.

Решение матричного уравнения с параметромТретье действие: получаем обратную матрицу

Видео:§29 Решение матричного уравненияСкачать

§29 Решение матричного уравнения

Шаг 4. Вычисляем неизвестную матрицу

Нам остаётся посчитать матрицу X: умножаем обратную матрицу А -1 на матрицу B. Дробь держим за скобками и вносим в матрицу только при условии, что элементы новой матрицы будут кратны десяти — их можно умножить на дробь и получить целое число. Если кратных элементов не будет — дробь оставим за скобками.

Решение матричного уравнения с параметромРешаем матричное уравнение и находим неизвестную матрицу X. Мы получили кратные числа и внесли дробь в матрицу

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Шаг 5. Проверяем уравнение

Мы решили матричное уравнение и получили красивый ответ с целыми числами. Выглядит правильно, но в случае с матрицами этого недостаточно. Чтобы проверить ответ, нам нужно вернуться к условию и умножить исходную матрицу A на матрицу X. В результате должна появиться матрица B. Если расчёты совпадут — мы всё сделали правильно. Если будут отличия — придётся решать заново.

👉 Часто начинающие математики пренебрегают финальной проверкой и считают её лишней тратой времени. Сегодня мы разобрали простое уравнение с двумя квадратными матрицами с четырьмя элементами в каждой. Когда элементов будет больше, в них легко запутаться и допустить ошибку.

Решение матричного уравнения с параметромПроверяем ответ и получаем матрицу B — наши расчёты верны

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Ну и что

Алгоритм решения матричных уравнений несложный, если знать отдельные его компоненты. Дальше на основе этих компонентов математики переходят в более сложные пространства: работают с многомерными матрицами, решают более сложные уравнения, постепенно выходят на всё более и более абстрактные уровни. И дальше, в конце пути, появляется датасет из миллионов котиков. Этот датасет раскладывается на пиксели, каждый пиксель оцифровывается, цифры подставляются в матрицы, и уже огромный алгоритм в автоматическом режиме генерирует изображение нейрокотика:

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Видео:Уравнение с параметром | Математика TutorOnlineСкачать

Уравнение с параметром | Математика TutorOnline

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Видео:11 класс, 34 урок, Задачи с параметрамиСкачать

11 класс, 34 урок, Задачи с параметрами

Решение систем линейных уравнений с параметрами

Разделы: Математика

Цель:

  • повторить решение систем линейных уравнений с двумя переменными
  • дать определение системы линейных уравнений с параметрами
  • научит решать системы линейных уравнений с параметрами.

Ход урока

  1. Организационный момент
  2. Повторение
  3. Объяснение новой темы
  4. Закрепление
  5. Итог урока
  6. Домашнее задание

2. Повторение:

I. Линейное уравнение с одной переменной:

1. Дайте определение линейного уравнения с одной переменной

[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]

2. Сколько корней может иметь линейное уравнение?

[- Если а=0, bРешение матричного уравнения с параметром0, то уравнение не имеет решений, хРешение матричного уравнения с параметромРешение матричного уравнения с параметром

— Если а=0, b=0, то х Решение матричного уравнения с параметромR

— Если аРешение матричного уравнения с параметром0, то уравнение имеет единственное решение, х = Решение матричного уравнения с параметром

3. Выясните, сколько корней имеет уравнение (по вариантам)

I ряд – I вариант

Ответ: много корнейII ряд – II вариант

Ответ: корней нетIII ряд – III вариант

Ответ: единственный корень

II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.

1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.

[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]

2. Что называется решением уравнения с двумя переменными?

[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]

3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?

4. Что называется графиком уравнения с двумя переменными?

[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]

5. Выясните, что представляет собой график уравнения:

[Выразим переменную у через х: у=-1,5х+3

Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]

6. Что является графиком уравнения ах+bу=с с переменными х и у, где аРешение матричного уравнения с параметром0 или bРешение матричного уравнения с параметром0?

[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]

7. Что называется решением системы уравнений с двумя переменными?

[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]

8. Что значит решить систему уравнений?

[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]

9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).

10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?

[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]

11. Каким уравнением обычно задается прямая?

12. Установите связь между угловыми коэффициентами и свободными членами:

I вариант:

  • у=-х+2
  • y= -x-3,

k1 = k2, b1Решение матричного уравнения с параметромb2, нет решений;II вариант:

  • y=-х+8
  • y=2x-1,

k1Решение матричного уравнения с параметромk2, одно решение;III вариант:

  • y=-x-1
  • y=-x-1,

k1 = k2, b1 = b2, много решений.

Вывод:

  1. Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
  2. Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
  3. Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.

На доске таблица, которую постепенно заполняет учитель вместе с учениками.

III. Объяснение новой темы.

где A1, A2, B1,B2, C1 C2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.

Возможны следующие случаи:

1) Если Решение матричного уравнения с параметром, то система имеет единственное решение

2) Если Решение матричного уравнения с параметром, то система не имеет решений

3) Если Решение матричного уравнения с параметром, то система имеет бесконечно много решений.

IV. Закрепление

Пример 1.

При каких значениях параметра а система

  • 2х — 3у = 7
  • ах — 6у = 14

а) имеет бесконечное множество решений;

б) имеет единственное решение

а) Решение матричного уравнения с параметром, а=4

б) Решение матричного уравнения с параметром, а?4

а) если а=4, то система имеет бесконечное множество решений;

б) если аРешение матричного уравнения с параметром4, то решение единственное.

Пример 2.

Решите систему уравнений

  • x+(m+1)y=1
  • x+2y=n

Решение: а) Решение матричного уравнения с параметром, т.е. при mРешение матричного уравнения с параметром1 система имеет единственное решение.

Решение матричного уравнения с параметром

б) Решение матричного уравнения с параметром, т.е. при m=1 (2=m+1) и nРешение матричного уравнения с параметром1 исходная система решений не имеет

в) Решение матричного уравнения с параметром, при m=1 и n=1 система имеет бесконечно много решений.

Ответ: а) если m=1 и nРешение матричного уравнения с параметром1, то решений нет

б) m=1 и n=1, то решение бесконечное множество

  • у — любое
  • x=n-2y

в) если mРешение матричного уравнения с параметром1 и n — любое, то

y= Решение матричного уравнения с параметромx=Решение матричного уравнения с параметром

Пример 3.

Для всех значений параметра а решить систему уравнений

  • ах-3ау=2а+3
  • х+ау=1

Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение

1) а=0. Тогда уравнение имеет вид 0*у=3 [у Решение матричного уравнения с параметромРешение матричного уравнения с параметром]

Следовательно, при а=0 система не имеет решений

Следовательно, у Решение матричного уравнения с параметром. При этом х=1-ау=1+3у

3) аРешение матричного уравнения с параметром0 и аРешение матричного уравнения с параметром-3. Тогда у=-Решение матричного уравнения с параметром, х=1-а(-Решение матричного уравнения с параметром=1+1=2

1) если а=0, то (х; у) Решение матричного уравнения с параметромРешение матричного уравнения с параметром

2) если а=-3, то х=1+3у, уРешение матричного уравнения с параметром

3) если аРешение матричного уравнения с параметром0 и а?-3, то х=2, у=-Решение матричного уравнения с параметром

Рассмотрим II способ решения системы (1).

Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В2, второе на – В1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:

Решение матричного уравнения с параметром

Т.к. А1В22В1Решение матричного уравнения с параметром0, то х =Решение матричного уравнения с параметром

т.к. А2В11В2 Решение матричного уравнения с параметром0 у =Решение матричного уравнения с параметром

Для удобства решения системы (1) введем обозначения:

Решение матричного уравнения с параметромРешение матричного уравнения с параметром главный определитель

Решение матричного уравнения с параметром

Теперь решение системы (1) можно записать с помощью определителей:

х= Решение матричного уравнения с параметром; у=Решение матричного уравнения с параметром

Приведенные формулы называют формулами Крамера.

— Если Решение матричного уравнения с параметром, то система (1) имеет единственное решение: х=Решение матричного уравнения с параметром; у=Решение матричного уравнения с параметром

— Если Решение матричного уравнения с параметром, Решение матричного уравнения с параметромили Решение матричного уравнения с параметром, Решение матричного уравнения с параметром, то система (1) не имеет решений

— Если Решение матричного уравнения с параметром, Решение матричного уравнения с параметром, Решение матричного уравнения с параметром, Решение матричного уравнения с параметром, то система (1) имеет бесконечное множество решений.

В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае Решение матричного уравнения с параметромчасто бывает удобно исследовать систему следующим образом: решая уравнение Решение матричного уравнения с параметром, найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.

Если коэффициенты А1, А2, В1, В2, системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.

Пример 4.

Для всех значений параметра а решить систему уравнений

  • (а+5)х+(2а+3)у=3а+2
  • (3а+10)х+(5а+6)у=2а+4

Решение: Найдем определитель системы:

Решение матричного уравнения с параметромРешение матричного уравнения с параметромРешение матричного уравнения с параметром Решение матричного уравнения с параметром= (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)

Решение матричного уравнения с параметромРешение матричного уравнения с параметромРешение матричного уравнения с параметром Решение матричного уравнения с параметром= (3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)

Решение матричного уравнения с параметромРешение матричного уравнения с параметромРешение матричного уравнения с параметром Решение матричного уравнения с параметром=(а+5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)

1) Решение матричного уравнения с параметромТогда

х= Решение матричного уравнения с параметрому=Решение матричного уравнения с параметром

2) Решение матричного уравнения с параметромили а=2

При а=0 определители Решение матричного уравнения с параметром

Тогда система имеет вид:

  • 5х+3у=2 Решение матричного уравнения с параметром5х+3у=2 Решение матричного уравнения с параметром
  • 10х+6у=4

При а=2 Решение матричного уравнения с параметромЭтого достаточно, чтобы утверждать, что система не имеет решений.

1) если а Решение матричного уравнения с параметроми аРешение матричного уравнения с параметром, то х= Решение матричного уравнения с параметрому=Решение матричного уравнения с параметром

2) если а=0, то хРешение матричного уравнения с параметром, Решение матричного уравнения с параметром

3) если а=2, то (х; у)Решение матричного уравнения с параметромРешение матричного уравнения с параметром

Пример 5.

Для всех значений параметров а и b решить систему уравнений

Решение: Решение матричного уравнения с параметром= Решение матричного уравнения с параметром Решение матричного уравнения с параметром Решение матричного уравнения с параметром=а+1-2b

Решение матричного уравнения с параметром= Решение матричного уравнения с параметромРешение матричного уравнения с параметром Решение матричного уравнения с параметром= b -6; Решение матричного уравнения с параметром Решение матричного уравнения с параметромРешение матричного уравнения с параметром Решение матричного уравнения с параметром= 3a+3-bРешение матричного уравнения с параметром

1) Решение матричного уравнения с параметром. Тогда

х= Решение матричного уравнения с параметрому=Решение матричного уравнения с параметром

2) Решение матричного уравнения с параметром

Подставив выражение параметра а в систему, получим:

  • 2bx+2y=b 2bx+2y=b
  • bx+y=3 Решение матричного уравнения с параметром2bx+2y=6

Если bРешение матричного уравнения с параметром6, то система не имеет решений, т.к. в этом случае I и II уравнения системы противоречат друг другу.

Если b=6, а=2b-1=2*6-1=11, то система равносильна одному уравнению

12х+2у=6 Решение матричного уравнения с параметрому=3-6х

1) если Решение матричного уравнения с параметром, (аРешение матричного уравнения с параметром), то x=Решение матричного уравнения с параметром, y=Решение матричного уравнения с параметром

2) если bРешение матричного уравнения с параметром, aРешение матричного уравнения с параметром, то система не имеет решений

3) если b=6, а=11, то хРешение матричного уравнения с параметром, у=3-6х

Итог урока: Повторить по таблице и поставить оценки.

При каких значениях параметра система уравнений

  • 3х-2у=5
  • 6х-4у=b

а) имеет бесконечное множество решений

б) не имеет решений

б) bРешение матричного уравнения с параметром10

📹 Видео

9 класс, 7 урок, Задачи с параметрамиСкачать

9 класс, 7 урок, Задачи с параметрами

Матричные уравнения Полный разбор трех типов матричных уравненийСкачать

Матричные уравнения Полный разбор трех типов матричных уравнений

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Математика это не ИсламСкачать

Математика это не Ислам

Уравнения с параметром. Алгебра, 8 классСкачать

Уравнения с параметром. Алгебра, 8 класс

9 класс. Алгебра. Уравнение с параметрами.Скачать

9 класс. Алгебра. Уравнение с параметрами.

9 класс. Алгебра. Уравнения с параметромСкачать

9 класс. Алгебра. Уравнения с параметром

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин

#83 Урок 8. Рациональные уравнения с параметрами. Алгебра 8 класс.Скачать

#83 Урок 8. Рациональные уравнения с параметрами. Алгебра 8 класс.
Поделиться или сохранить к себе: