Это символы не жёстко привязаны к соотв. операциям, можно использовать другие.
- Примеры логических выражений
- Где учитесь?
- Калькулятор логических выражений
- Калькулятор логических выражений
- Шпаргалка по работе с калькулятором.
- Калькулятор логических выражений онлайн
- Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.
- Как пользоваться калькулятором
- Видеоинструкция к калькулятору
- Используемые символы
- Обозначения логических операций
- Что умеет калькулятор
- Что такое булева функция
- Что такое таблица истинности?
- Логические операции
- Таблица истинности логических операций
- Как задать логическую функцию
- Способы представления булевой функции
- Совершенная дизъюнктивная нормальная форма (ДНФ)
- Совершенная конъюнктивная нормальная форма (КНФ)
- Алгебраическая нормальная форма (АНФ, полином Жегалкина)
- Алгоритм построения СДНФ для булевой функции
- Алгоритм построения СКНФ для булевой функции
- Алгоритм построения полинома Жегалкина булевой функции
- Примеры построения различных представлений логических функций
- Построение совершенной дизъюнктивной нормальной формы:
- Построение совершенной конъюнктивной нормальной формы:
- Построение полинома Жегалкина:
- 📽️ Видео
Примеры логических выражений
С применением отрицания
Со знаком «эквивалентно»
Со знаком «следствие»
С применением конъюкции и дизъюнкции
С применением Не-и и Не-или
В калькуляторе вы сможете упростить выражения, содержащие следующие операции: NOT, XOR, AND, OR, NAND, NOR, NOT
© Контрольная работа РУ — калькуляторы онлайн
Видео:8 класс - Информатика - Решение логических задачСкачать
Где учитесь?
Для правильного составления решения, укажите:
Видео:Информатика. Алгебра логики: Таблицы истинности. Центр онлайн-обучения «Фоксфорд»Скачать
Калькулятор логических выражений
Упрощение логических выражений онлайн
Видео:ПОДГОТОВКА К ЕГЭ. ИНФОРМАТИКА. УРОК 2. РЕШЕНИЕ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ОТОБРАЖЕНИЯСкачать
Калькулятор логических выражений
Программа предназначена для получения таблиц истинности логических функций с числом переменных от одной до пяти. Логической (булевой) функцией n переменных y = f(x1, x2, …, xn) называется такая функция, у которой все переменные и сама функция могут принимать только два значения: 0 и 1.
Видео:Решение логических задач | Информатика 8 класс #15 | ИнфоурокСкачать
Шпаргалка по работе с калькулятором.
Переменные, которые могут принимать только два значения 0 и 1 называются логическими переменными (или просто переменными). Заметим, что логическая переменная х может подразумевать под числом 0 некоторое высказывание, которое ложно, и под числом 1 высказывание, которое истинно.
Из определения логической функции следует, что функция n переменных – это отображение B n в B, которое можно задать непосредственно таблицей, называемой таблицей истинности данной функции.
Основные функции логики – это функции двух переменных z = f(x,y).
Число этих функций равно 2 4 = 16. Перенумеруем и расположим их в естественном порядке.
Рассмотрим более подробно эти функции. Две из них f0 = 0 и f15 = 1 являются константами. Функции f3, f5, f10 и f12 являются по существу функциями одной переменной.
Наиболее важные функции двух переменных имеют специальные названия и обозначения.
1) f1 – конъюнкция (функция И)
Заметим, что конъюнкция – это фактически обычное умножение (нулей и единиц). Эту функцию обозначают x&y;
2) f7 – дизъюнкция (функция или). Обозначается V.
3) f13 – импликация (следование). Обозначается ->
Это очень важная функция, особенно в логике. Ее можно рассматривать следующим образом: если х = 0 (т. е. х “ложно”), то из этого факта можно вывести и “ложь”, и “истину” (и это будет правильно), если у = 1 (т. е. у “истинно”), то истина выводится и из “лжи” и из “истины”, и это тоже правильно. Только вывод “из истины ложь” является неверным. Заметим, что любая теорема всегда фактически содержит эту логическую функцию;
4) f6 – сложение по модулю 2. Обозначается знаком “+” или знаком “+” в кружке.
5) f9 – эквивалентность или подобие. Эта f9 = 1 тогда и только тогда, когда х = у. Обозначается х
6) f14 – штрих Шеффера. Иногда эту функцию называют “не и” (так как она равна отрицанию конъюнкции). Обозначается x|y.
7) f8 – стрелка Пирса (иногда эту функцию называют штрих Лукасевича).
Три оставшиеся функции, (f2 , f4 и f11) особого обозначения не имеют.
Заметим, что часто в логике рассматриваются функции от функций, т.е. суперпозиции перечисленных выше функций. При этом последовательность действий указывается (как обычно) скобками.
На данный момент логический калькулятор умеет выполнять следующее:
- Ввод и проверка переменных на корректность. Под корректностью подразумевается правильное написание букв и операций над ними
- Вывод таблицы истинности для выражения
- СКНФ и СДНФ
Видео:ИНФОРМАТИКА 8 класс: Решение логических задач | ВидеоурокСкачать
Калькулятор логических выражений онлайн
Можно также попробовать работу калькулятора логики онлайн (это другая версия, а не та, которую можно скачать выше по ссылке). Правда, лучше считать в нем с PC, с телефона может работать не корректно. Пример ввода:
Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать
Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.
Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.
Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина
введите функцию или её вектор
Построено таблиц, форм:
Видео:Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать
Как пользоваться калькулятором
- Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
- Укажите действия, которые необходимо выполнить с помощью переключателей
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Видео:Преобразование логических выражений / Упрощение выражений (практика) [Алгебра логики] #6Скачать
Видеоинструкция к калькулятору
Используемые символы
В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a , x , a1 , B , X , X1 , Y1 , A123 и так далее.
Для записи логических операций можно использовать как обычные символы клавиатуры ( * , + , ! , ^ , -> , = ), так и символы, устоявшиеся в литературе ( ∧ , ∨ , ¬ , ⊕ , → , ≡ ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.
Для смены порядка выполнения операций используются круглые скобки ().
Обозначения логических операций
- И (AND): & • ∧ *
- ИЛИ (OR): ∨ +
- НЕ (NOT): ¬ !
- Исключающее ИЛИ (XOR): ⊕ ^
- Импликация: -> → =>
- Эквивалентность: =
Что умеет калькулятор
- Строить таблицу истинности по функции
- Строить таблицу истинности по двоичному вектору
- Строить совершенную конъюнктивную нормальную форму (СКНФ)
- Строить совершенную дизъюнктивную нормальную форму (СДНФ)
- Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
- Определять принадлежность функции к каждому из пяти классов Поста
- Строить карту Карно
- Минимизировать ДНФ и КНФ
- Искать фиктивные переменные
Видео:Построение таблиц истинностиСкачать
Что такое булева функция
Булева функция f(x1, x2, . xn) — это любая функция от n переменных x1, x2, . xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.
Видео:Решение логических выражений. 8 класс. Тема 1.3Скачать
Что такое таблица истинности?
Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2 n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.
Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.
Видео:Таблица истинностиСкачать
Логические операции
Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).
Таблица истинности логических операций
a | b | a ∧ b | a ∨ b | ¬a | ¬b | a → b | a = b | a ⊕ b |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
Видео:Построение схем по логическим выражениямСкачать
Как задать логическую функцию
Есть множество способов задать булеву функцию:
- таблица истинности
- характеристические множества
- вектор значений
- матрица Грея
- формулы
Рассмотрим некоторые из них:
Чтобы задать функцию через вектор значений необходимо записать вектор из 2 n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).
Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c
Видео:Решение логических выражений. Таблицы истинности. [Алгебра логики] #2Скачать
Способы представления булевой функции
С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:
- Совершенная дизъюнктивная нормальная форма (СДНФ)
- Совершенная конъюнктивная нормальная форма (СКНФ)
- Алгебраическая нормальная форма (АНФ, полином Жегалкина)
Совершенная дизъюнктивная нормальная форма (ДНФ)
Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.
Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.
Совершенная конъюнктивная нормальная форма (КНФ)
Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.
Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.
Алгебраическая нормальная форма (АНФ, полином Жегалкина)
Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.
Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1
Алгоритм построения СДНФ для булевой функции
- Построить таблицу истинности для функции
- Найти все наборы аргументов, на которых функция принимает значение 1
- Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
- Объединить все простые конъюнкции с помощью дизъюнкции
Алгоритм построения СКНФ для булевой функции
- Построить таблицу истинности для функции
- Найти все наборы аргументов, на которых функция принимает значение 0
- Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
- Объединить все простые дизъюнкции с помощью конъюнкции
Алгоритм построения полинома Жегалкина булевой функции
Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.
- Построить таблицу истинности для функции
- Добавить новый столбец к таблице истинности и записать в 1, 3, 5. ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6. прибавить по модулю два значения из соответственно 1, 3, 5. строк.
- Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10. строк, а к 3, 4, 7, 8, 11, 12. строкам аналогично предыдущему пункту прибавить переписанные значения.
- Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
- Выписать булевы наборы, на которых значение последнего столбца равно единице
- Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.
Видео:Построение таблиц истинностиСкачать
Примеры построения различных представлений логических функций
Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca
1. Построим таблицу истинности для функции
a | b | c | ¬a | ¬a ∧b | ¬b | ¬b ∧c | ¬a ∧b∨ ¬b ∧c | c∧a | ¬a ∧b∨ ¬b ∧c∨c∧a |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Построение совершенной дизъюнктивной нормальной формы:
Найдём наборы, на которых функция принимает истинное значение:
В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:
Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:
Построение совершенной конъюнктивной нормальной формы:
Найдём наборы, на которых функция принимает ложное значение:
В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:
Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:
Построение полинома Жегалкина:
Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:
a | b | c | F | 1 | |
0 | 0 | 0 | 0 | → | 0 |
0 | 0 | 1 | 1 | ⊕ 0 | 1 |
0 | 1 | 0 | 1 | → | 1 |
0 | 1 | 1 | 1 | ⊕ 1 | 0 |
1 | 0 | 0 | 0 | → | 0 |
1 | 0 | 1 | 1 | ⊕ 0 | 1 |
1 | 1 | 0 | 0 | → | 0 |
1 | 1 | 1 | 1 | ⊕ 0 | 1 |
Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:
a | b | c | F | 1 | 2 | |
0 | 0 | 0 | 0 | 0 | → | 0 |
0 | 0 | 1 | 1 | 1 | → | 1 |
0 | 1 | 0 | 1 | 1 | ⊕ 0 | 1 |
0 | 1 | 1 | 1 | 0 | ⊕ 1 | 1 |
1 | 0 | 0 | 0 | 0 | → | 0 |
1 | 0 | 1 | 1 | 1 | → | 1 |
1 | 1 | 0 | 0 | 0 | ⊕ 0 | 0 |
1 | 1 | 1 | 1 | 1 | ⊕ 1 | 0 |
Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:
a | b | c | F | 1 | 2 | 3 | |
0 | 0 | 0 | 0 | 0 | 0 | → | 0 |
0 | 0 | 1 | 1 | 1 | 1 | → | 1 |
0 | 1 | 0 | 1 | 1 | 1 | → | 1 |
0 | 1 | 1 | 1 | 0 | 1 | → | 1 |
1 | 0 | 0 | 0 | 0 | 0 | ⊕ 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | ⊕ 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | ⊕ 1 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | ⊕ 1 | 1 |
Окончательно получим такую таблицу:
a | b | c | F | 1 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):
Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc
Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.
📽️ Видео
КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23Скачать
Информатика КЕГЭ 2022. Алгебра логики. Законы преобразования логических выражений.Скачать
Конъюнкция, дизъюнкция, импликация, эквиваленция, отрицание. На примерах из жизни. Логика.Скачать
Методы решения логических задач | Онлайн-школа Альфа. 5-6 классСкачать
Логические выражения, таблицы истинности ,структурная логическая схемаСкачать
Упрощение логических выраженийСкачать