Видео:№18. Логарифмическое уравнение с ПАРАМЕТРОМ (профильный ЕГЭ)Скачать
Показательные уравнения c параметром
Как правило, чтобы решить показательные уравнения с параметром нужно привести их квадратному или линейному уравнению. Обычно это можно сделать при помощи метода замены переменных. Но надо быть внимательным – при замене (t=a^x), новая переменная (t) всегда положительна.
Найдите все значения параметра (a), при которых уравнение ((a+1)(4^x+4^)=5) имеет единственное решение.
Заметим, что (a+1 > 0), так как (4^x+4^ > 0). Сделаем замену (t=4^x); (t > 0) $$ (a+1)(t+frac)=5;$$ $$(a+1)t^2-5t+a+1=0$$ $$_=frac<5±sqrt> .$$
Уравнение будет иметь единственное решение, если $$D=25-4(a+1)^2=0 $$ $$a+1=±frac$$ (a=-3.5 -) не подходит;
(a=1.5;)
Видео:Решение логарифмических уравнений. Вебинар | МатематикаСкачать
Логарифмические уравнения с параметром
Чтобы решить логарифмические уравнения, надо обязательно записывать ОДЗ, а затем провести необходимые равносильные преобразования или сделать замену, чтобы свести уравнение к более простому.
Решите уравнение (log_a (x^2)+2log_a (x+1)=2) для каждого (a).
Перейдем от суммы логарифмов к их произведению:
При условии, что (1-4a≥0 ⇔ 0 0).
При условии, что $$ 1+4a>0 ⇔ a>0$$ корень $$x=frac-frac<sqrt>$$ не подходит, так как ( x>0.)
Найдите все значения параметра (a), при которых уравнение (log_4 (16^x+a)=x) имеет два действительных и различных корня.
При помощи равносильного преобразования приведем наше уравнение к виду:
Сделаем замену: (t=4^x>0 ⇔ t^2-t+a=0,)
Полученное квадратное уравнение должно иметь корни (0 0, \D≥0, \D>0, \ _>0; end $$ $$ begin a>0, \1-4a>0, \ 1/2>0; end $$ $$ begin a>0, \a
Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать
Методическая разработка для учащихся 11-го класса «Решение логарифмических уравнений с параметром»
Разделы: Математика
Ученик проходит в несколько лет
дорогу, на которую человечество
употребило тысячелетие.
Однако его следует вести к цели
не с завязанными глазами, а
зрячим: он должен воспринимать
истину, не как готовый результат,
а должен её открывать.
Учитель должен руководить этой
экспедицией открытий, следовательно,
также присутствовать не только в качестве простого зрителя.
Но ученик должен напрягать свои силы; ему ничто не должно
доставаться даром. Даётся только тому, кто стремится.
Кто любит учиться, никогда
не проводит время в праздности.
Гений состоит из одного процента вдохновения и девяноста девяти процентов потения.
Данная методическая разработка «Решение логарифмических уравнений с параметрами» предназначена для учащихся 11 классов, желающих углубить и расширить свои знания по математике, готовящихся к поступлению в высшие учебные заведения, понимающих, что математику надо учить потому, что она ум в порядок приводит и без неё невозможно стать специалистом в любой отрасли знаний, невозможно стать профессиональным специалистом.
В структуре методической разработки рассматриваются три типа решения логарифмических уравнений с параметрами:
- Уравнения, содержащие параметры в логарифмируемом выражении.
- Уравнения, содержащие параметры в основании.
- Уравнения, содержащие параметры и в основании, и в логарифмируемом выражении.
К сожалению, изучению этих трёх типов решения логарифмических уравнений с параметрами в программе общеобразовательной школы уделяется незаслуженно мало внимания. А подобные уравнения входят в сложную группу заданий, предлагаемых в рамках ЕГЭ, для решения которых необходима хорошая теоретическая подготовка учащихся и уверенное владение технологиями решения математических задач. Выпускник должен не только знать обязательные этапы решения логарифмических уравнений с параметрами, но и хорошо понимать их смысл и назначение, так как многие учащиеся понимают параметр, как «обычное число». Действительно, в некоторых задачах параметр можно считать постоянной величиной, но эта постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной. В других задачах параметром бывает удобно объявить одну из неизвестных.
На вступительных экзаменах в высшие учебные заведения в виде ЕГЭ встречаются два типа задач с параметрами. Первый «для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй «найти все значения параметра, при каждом из которых решения уравнения или неравенства удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В задачах первого типа ответ выглядит так: перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответах второго типа задач с параметром перечисляются все значения параметра, при которых выполнены условия задачи.
Основная цель данной методической разработки: научить учащихся решать нестандартные логарифмические уравнения с параметром, показать разные методы их решений, сделать использование этих методов глубоко осмысленными.
Предлагаемые в этой методической разработке методы решения уравнений не сказочный ключ к решению любой задачи. Но они направляют мысль, сокращают время поиска, формируют навыки решения. Все предлагаемые уравнения снабжены подробными решениями. Показано решение 18 уравнений. Но чтобы получить ощутимую пользу от знакомства с готовым решением, необходимо, уловив новую идею, удержаться и не читать дальше, и попробовать затем решать самостоятельно.
При решении логарифмических уравнений с параметрами необходимо придерживаться следующей схемы:
1. Найти область допустимых значений.
2. Решить уравнение (чаще всего выразить х через а).
3. Сделать перебор параметра а с учетом ОДЗ.
4. Проверить, удовлетворяют ли найденные корни уравнения условиям ОДЗ.
5. Записать ответ.
Видео:Решение логарифмических уравнений с параметромСкачать
Логарифмические уравнения, неравенства и системы с параметром
п.1. Примеры
Пример 1. Решите уравнение:
a) ( lg 2x+lg(2-x)=lglg a )
ОДЗ: ( begin 2xgt 0\ 2-xgt 0\ xgt 0\ lg agt 0 end Rightarrow begin xgt 0\ xlt 2\ agt 0\ agt 1 end Rightarrow begin 0lt xlt 2\ agt 1 end )
(lgleft(2xcdot(2-x)right)=lglg aRightarrow 2xcdot(2-x)=lg aRightarrow 2x^2-4x+lg a=0 |: 2)
(x^2-2x+frac12lg a=0)
Решаем квадратное уравнение. Исследуем дискриминант:
(D=(-2)^2-4cdotfrac=4-2lg a)
(Dlt 0) при (4-2lg alt 0Rightarrow lg agt 2Rightarrow agt 100) — решений нет
(D=0) при (a=100, x=1) — одно решение
(Dgt 0) при (alt 100) (учитывая ОДЗ, (1lt alt 100))
(x_=frac<2pmsqrt>=1pmsqrt<1-frac>)
Т.к. (sqrt<1-frac>lt 1) требование (0lt x_lt 2) выполняется.
Ответ:
При (aleq 1cup agt 100) решений нет, (xinvarnothing)
При (a=100) один корень (x=1)
При (1lt alt 100) два корня (x_=1pmsqrt<1-frac>)
б) ( x^=a^2 x )
ОДЗ: ( begin xgt 0\ agt 0\ ane 1 end )
Замена: (t=log_a xRightarrow x=a^t.) Подставляем: begin (a^t)^t=a^2cdot a^tRightarrow a^=a^Rightarrow\ Rightarrow t^2=2+tRightarrow t^2-t-2=0Rightarrow (t+1)(t-2)=0Rightarrow left[ begin t_1=-1\ t_2=2 end right. end Возвращаемся к исходной переменной: begin left[ begin log_a x=-1\ log_a x=2 end right. Rightarrow left[ begin x_1=a^=frac1a\ x_2=a^2 end right. end Ответ:
При (0lt alt 1cup agt 1) два корня (x_1=frac1a, x_2=a^2)
При (alt 0cup a=1) решений нет.
в) ( 2-log_(1+x)=3log_asqrt-log_(x^2-1)^2 )
ОДЗ: ( begin 1+xgt 0\ x-1gt 0\ xne pm 1\ agt 0, ane 1 end Rightarrow begin xgt -1\ xgt 1\ xne pm 1\ agt 0, ane 1 end Rightarrow begin xgt 1\ agt 0, ane 1 end )
Приведем к одному основанию: (log_asqrt=log_(x-1))
begin 2-log_(1+x)=3log_(x-1)-log_(x^2-1)^2\ log_a^4-log_(1+x)=log_(x-1)^3-log_(x^2-1)^2\ log_frac=log_frac\ frac=fracRightarrow frac=fracRightarrow a^4=frac end Т.к. (xgt 1) все скобки можно сократить. $$ a^4(x+1)=x-1Rightarrow x(a^4-1)=-a^4-1Rightarrow x=frac $$ Проверим требование (xgt 1): begin fracgt 1Rightarrow fracgt 0 Rightarrow fracgt 0Rightarrow\ Rightarrow 1-a^4gt 0Rightarrow a^4lt 1Rightarrow |a|lt 1Rightarrow -1lt alt 1 end Учитывая, что (agt 0), получаем (0lt alt 1).
Ответ:
При (0lt 1lt 1) один корень (x=frac)
При (aleq 0cup ageq 1) решений нет.
Пример 2. Решите неравенство:
a) ( log_a(x-1)+log_a xgt 2 )
(log_a(x(x-1))gtlog_a a^2) begin left[ begin begin agt 1\ x-1gt 0\ xgt 0\ x^2-xgt a^2 end \ begin 0lt alt 1\ x-1gt 0\ xgt 0\ x^2-xlt a^2 end end right. Rightarrow left[ begin begin agt 1\ xgt 1\ x^2-x-a^2gt 0 end \ begin 0lt alt 1\ x-1gt 0\ xgt 1\ x^2-x-a^2lt 0 end end right. end Исследуем параболу (f(x)=x^2-x-a^2)
(D=1+4a^2gt 0, forall a)
(x_=frac<1pmsqrt>)
Эта парабола всегда имеет две различных точки пересечения с осью OX.
(f(x)gt 0), при (xlt x_1cup xgt x_2)
(f(x)lt 0), при (x_1lt xlt x_2)
Подставляем в совокупность: begin left[ begin begin agt 1\ xgt 1\ xltfrac<1-sqrt>cup xgtfrac<1+sqrt> end \ begin 0lt alt 1\ xgt 1\ frac<1-sqrt>lt xlt frac<1+sqrt> end end right. Rightarrow left[ begin begin agt 1\ xgt frac<1+sqrt> end \ begin 0lt alt 1\ alt xlt frac<1+sqrt> end end right. end Ответ:
При (agt 1) луч (xinleft(frac<1+sqrt>;+inftyright))
При (0lt alt 1) интервал (xinleft(1;frac<1+sqrt>right))
При (aleq 0cup a=1) решений нет.
б) ( log_x(x-a)gt 2 )
(log_x(x-a)gtlog_x x^2) begin left[ begin begin xgt 1\ x-agt x^2\ x-agt 0 end \ begin 0lt xlt 1\ x-alt x^2\ x-agt 0 end end right. Rightarrow left[ begin begin xgt 1\ x^2-x+alt 0\ xgt a end \ begin 0lt xlt 1\ x^2-x+agt 0\ xgt a end end right. end Исследуем параболу (f(x)=x^2-x+a)
(D=1-4a)
Для первой системы в совокупности получаем: (x^2-x+alt 0) при (Dgt 1Rightarrow 1-4agt 0Rightarrow altfrac14)
Если (xgt 1) и (altfrac14,) то (xgt a), противоречий нет.
(x_=frac<1pmsqrt>)
Парабола ниже 0 на участке (x_1lt xlt x_2). begin begin xgt 1\ x^2-x+alt 0\ xgt a end Rightarrow begin xgt 1\ frac<1-sqrt>lt xlt frac<1+sqrt>\ alt frac14 end end (x_1=frac<1-sqrt>lt 1) при всех (altfrac14)
Рассмотрим требование begin x_2=frac<1+sqrt>gt 1Rightarrow 1+sqrtgt 2Rightarrow sqrtgt 1Rightarrow\ Rightarrow 1-4agt 1Rightarrow 4alt 0Rightarrow alt 0 end (x_2=frac<1+sqrt>gt 1) при (alt 0)
Решение первой системы: ( begin 0lt alt xlt 1\ x^2-x+agt 0 end )
Если (agtfrac14, Dlt 0) и (x^2-x+agt 0) для всех (x)
Если (a=frac14, D=0) и (x^2-x+agt 0) для всех (x), кроме (x=frac12)
Если (0lt alt frac14, x^2-x+agt 0) для (xlt x_1cup xgt x_2)
Как было показано выше, при (0lt alt frac14, x_2=frac<1+sqrt>lt 1) и (alt x_2lt xlt 2)
Кроме того (alt xlt x_1lt 1) begin begin 0lt xlt 1\ x^2-x+agt 0\ xgt a end Rightarrow left[ begin begin frac14lt alt 1\ alt xlt 1 end \ begin a=frac14\ frac14lt xlt 1, xnefrac12 end \ begin 0lt alt frac14\ alt xltfrac<1-sqrt>cup frac<1+sqrt> lt xlt 1 end end right. end Для наглядности отложим по оси OX параметр a, по оси OY — значение x(a).
Парабола (f(x)=x^2-x-a^2) в осях a и x(a) имеет ось симметрии (x=frac12) и вершину в точке (left(frac14;frac12right)).
Получаем следующий график:
Синим заштрихована область первой системы неравенств совокупности, желтым – второй системы неравенств.
Ответ:
При (alt 0, xinleft(1;frac<1+sqrt>right))
При (0lt altfrac14, xinleft(a;frac<1-sqrt>right)cup left(frac<1+sqrt>;1right))
При (a=frac14, xinleft(frac14;frac12right)cupleft(frac12;1right))
в) ( fracgt 3 ) begin frac-3gt 0\ fracgt 0\ left[ begin begin log_a(35-x^3)gt 3log_a(5-x)\ log_a(5-x)gt 0 end \ begin log_a(35-x^3)lt 3log_a(5-x)\ log_a(5-x)lt 0 end end right. Rightarrow left[ begin begin log_a(35-x^3)gt log_a(5-x)^3\ log_a(5-x)gt 0 end \ begin log_a(35-x^3)lt log_a(5-x)^3\ log_a(5-x)lt 0 end end right. Rightarrow \ Rightarrow left[ begin begin agt 1\ left[ begin begin 35-x^3gt(5-x)^3gt 0\ 5-xgt 1 end \ begin 0lt 35-x^3lt(5-x)^3\ 0lt 5-xlt 1 end end right. end \ begin 0lt alt 1\ left[ begin begin 0lt 35-x^3lt(5-x)^3\ 0lt 5-xlt 1 end \ begin 35-x^3gt (5-x)^3gt 0\ 5-xgt 1 end end right. end end right. Rightarrow begin 0lt alt 1cup agt 1\ left[ begin begin 35-x^3gt(5-x)^3gt 0\ 5-xgt 1 end \ begin 0lt 35-x^3lt (5-x)^3\ 0lt 5-xlt 1 end end right. end end Решим основное неравенство: begin 35-x^3gt(5-x)^3\ 35-x^3gt 125-75x+15x^2-x^3\ 15x^2-75x+90lt 0\ x^2-5x+6lt 0\ (x-2)(x-3)lt 0\ 2lt xlt 3 end Подставляем в систему: begin begin 0lt alt 1cup agt 1\ left[ begin begin 2lt xlt 3\ xlt 4 end \ begin xlt 2cup xgt 3\ xltsqrt[3]\ 4lt xlt 5 end end right. end Rightarrow begin 0lt alt 1cup agt 1\ left[ begin 2lt xlt 3\ varnothing end right. end Rightarrow begin 0lt alt 1cup agt 1\ 2lt xlt 3 end end Ответ:
При (0lt alt 1cup agt 1, xin(2;3))
При (aleq 0cup a=1) решений нет
Пример 3. При каких значениях (a) уравнение $$ 2lg(x+3)=lg(ax) $$ имеет единственный корень?
( begin (x+3)^2=ax\ x+3gt 0\ axgt 0 end Rightarrow begin x^2+(6-a)x+9=0\ xgt -3\ axgt 0 end )
Решим графически в осях a и x(a).
Найдем уравнение ветвей кривой: begin D=(6-a)^2-36=36-12a+a^2-36=a^2-12a=a(a-12)\ x=frac<a-6pmsqrt>\ left(2x-(a-6)right)^2=a(a-12)\ left(2x-(a-6)right)^2+36=a(a-12)+36\ left(2x-(a-6)right)^2+36=(a-6)^2\ (a-6)^2-left(2x-(a-6)right)^2=36 end Получаем уравнение гиперболы: begin frac-frac=1 end Уравнения асимптот: begin frac-frac=0\ a-6=pmleft(2x-(a-6)right)Rightarrow left[ begin 2(a-6)=2x\ 0=-2x end right. Rightarrow left[ begin x=a-6\ x=0 end right. end Гипербола находится между этими асимптотами.
Строим ОДЗ: ( begin xgt -3\ axgt 0 end )
Отмечаем точки, для которых (D=0:) $$ begin a=0\ x=-3 end , begin a=12\ x=3 end $$ Над этими точками будет ветка гиперболы с (x_2), под ними – с (x_1).
При (a=0) корень (x=-3), но не выполняется требование ОДЗ (axgt 0)
При (a=12) корень (x=3), требования ОДЗ выполняются. Это ответ.
При (agt 12) всегда будет два решения.
При (alt 0) всегда будет только одно решение, т.к. (x_1lt -3) и выходит из ОДЗ. Это тоже ответ.
Получаем: (alt 0cup a=12)
📽️ Видео
Логарифмическое уравнение с параметром. Задание 18 ЕГЭ по математике (46)Скачать
Теория к ЕГЭ 7 | Логарифмическое уравнение с параметромСкачать
✓ Как решать логарифмические уравнения и неравенства, не помня свойства логарифмов | Борис ТрушинСкачать
Логарифмические уравнения с параметрамиСкачать
Логарифмические уравнения. 11 класс.Скачать
Интересная задача на логарифмы в ЕГЭСкачать
84 людей этого не знают! Секретный способ решения Логарифмических УравненийСкачать
Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Логарифмическое уравнение с параметром. Задание 18 (34)Скачать
Алгебра 10 класс (Урок№27 - Логарифмические уравнения.)Скачать
6. Показательные и логарифмические уравнения и неравенства с параметрами. Часть 1.Скачать
Логарифмические уравнения 🥷🏿Скачать
Логарифмы в ЕГЭ🫢 Решишь второй?!Скачать
Проще простого! Как решить Логарифмическое Уравнение?Скачать
11 класс, 17 урок, Логарифмические уравненияСкачать
✓ Параметр с тригонометрией за 10 минут | ЕГЭ-2020. Задание 17. Математика. Профиль | Борис ТрушинСкачать