Решение линейных уравнений y kx

Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

График линейной функции, его свойства и формулы

Решение линейных уравнений y kx

О чем эта статья:

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Видео:Занятие 1. График линейной функции y=kx+bСкачать

Занятие 1. График линейной функции y=kx+b

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Видео:Линейная Функция — как БЫСТРО построить график и получить 5-куСкачать

Линейная Функция — как БЫСТРО построить график и получить 5-ку

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Видео:Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Решение линейных уравнений y kx

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Решение линейных уравнений y kx

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Видео:Функция y=k/x и ее график. 7 класс.Скачать

Функция y=k/x и ее график. 7 класс.

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Решение линейных уравнений y kx

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Решение линейных уравнений y kx

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Видео:Алгебра 7 Линейная функция y=kxСкачать

Алгебра 7 Линейная функция y=kx

Линейная функция в математике с примерами решения и образцами выполнения

Линейная функция — функция вида y=kx+b (для функций одной переменной).

Решение линейных уравнений y kx

Видео:Алгебра 7 класс. 8 октября. y=kxСкачать

Алгебра 7 класс. 8 октября. y=kx

Определение и геометрический смысл

Рассмотрим уравнение с двумя неизвестными х и у:

Решение линейных уравнений y kx

где Решение линейных уравнений y kxи b — заданные числа. Этому уравнению удовлетворяет бесконечное множество пар чисел х и у.

Решение линейных уравнений y kx

удовлетворяют следующие пары:

Решение линейных уравнений y kx

Для того чтобы найти пару чисел, удовлетворяющих уравнению ( * ), нужно придать х произвольное числовое значение и подставить в уравнение ( * ), тогда у получит определенное числовое значение. Например, если х = 27, то у = 2 x 27 — 6 = 48. Очевидно, что пара чисел х =27 и у =48 удовлетворяет уравнению (*). Так же и в случае уравнения (1) можно придать х произвольное числовое значение и получить для у соответствующее числовое значение.

Так как в данном уравнении х может принимать любое числовое значение, то его называют переменной величиной. Поскольку выбор этого числового значения ничем не ограничен, то х называют независимой переменной величиной или аргументом.

Для у получаются также различные значения, но уже в зависимости от выбранного значения х; поэтому у называют зависимым переменным или функцией.

Функцию у, определяемую уравнением (1), называют линейной функцией.

Пример:

Вычислить значения линейной функции, определяемой уравнением у = 0,5х + 3,7, при следующих значениях независимого переменного: х1 = 0, х2 = —0,5, х3 = —7,6.

Решение линейных уравнений y kx

Покажем, что если принять пару чисел х и у, удовлетворяющих уравнению (1), за абсциссу и ординату точки, то геометрическим местом этих точек будет прямая линия (рис. 14).

Решение линейных уравнений y kx

В самом деле, рассмотрим точку В(0, b) и точки М1(х1, у1) и М2(х2, у2), координаты которых удовлетворяют уравнению (1), т. е.

Решение линейных уравнений y kx

Обозначим проекции точек М1 и М2 на ось Ох через А1 и A2, тогда ОА1 = х1, ОА2 = х2, А1М1= у1, А2М2 = у2. Проведем из точки В прямую, параллельную оси Ох. При этом получим b = ОВ = А1Р1 = А2Р2.

Предположим, что точки BМ1 и М2 не лежат народной прямой. Соединяя точку В с точками М1 и М2, получим два прямоугольных треугольника ВР1М1 и ВР2М2, из которых имеем:

Решение линейных уравнений y kx

Но так как х1, у1 и х2, у2 удовлетворяют уравнению (1), то

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Выражения Решение линейных уравнений y kxи Решение линейных уравнений y kxявляются отношениями противоположных катетов к прилежащим для уг лов Решение линейных уравнений y kxР1ВМ1 и Решение линейных уравнений y kxР2ВМ2. Следовательно, tg Решение линейных уравнений y kxР1ВМ1 = Решение линейных уравнений y kxи tg Решение линейных уравнений y kxР2ВМ2 = Решение линейных уравнений y kx, а поэтому и Решение линейных уравнений y kxР1ВМ1 = Решение линейных уравнений y kxP2BM2 так как углы острые. Это значит, что точки М2 и В лежат на одной прямой. Но мы предположили, что эти точки не лежат на одной прямой. Таким образом, мы пришли к противоречию, а это и доказывает, что точки M1, М2 и В лежат на одной прямой. Обозначим угол Р1ВМ1 через а. Этот угол образован прямой ВМ1 с положительным направлением оси Ох.

Так как М1 и М2 — произвольные точки, координаты которых удовлетворяют уравнению (1), то можно сделать следующее заключение: любая точка, координаты которой удовлетворяют уравнению (1), лежит на прямой, отсекающей на оси Оу отрезок ОВ = b и образующей с положительным направлением оси Ох угол а такой, что tg a = Решение линейных уравнений y kx.

Число b называется начальной ординатой, число Решение линейных уравнений y kx— угловым коэффициентом прямой.

Предыдущие рассуждения позволяют сделать вывод: линейная функция y = Решение линейных уравнений y kxx + b определяет на плоскости прямую, у которой начальная ордината равна Ъ, а угловой коэффициент Решение линейных уравнений y kx.

Например, линейная функция Решение линейных уравнений y kxопределяет на координатной плоскости прямую, отсекающую на оси Оу отрезок —4 и наклоненную к оси Ох под углом в 60°, так как tg60° = Решение линейных уравнений y kx.

Если имеем определенную прямую, отсекающую на оси Оу отрезок b и наклоненную к оси Ох под углом Решение линейных уравнений y kx, тангенс которого равен то, взяв произвольную абсциссу, найдем на указанной прямой только одну точку, имеющую эту абсциссу, т. е. по заданному х найдется только одна точка, а следовательно, и одно значение у.

Очевидно, имеет место и такое предложение:

Всякой прямой, отсекающей на оси Оу отрезок b и наклоненной к оси Ох под углом, тангенс которого равен числу Решение линейных уравнений y kxсоответствует линейная функция y = Решение линейных уравнений y kxx + b.

Координаты любой тонки, лежащей на указанной прямой, удовлетворяют уравнению (1), поэтому уравнение у = Решение линейных уравнений y kxх + b называют уравнением прямой. Таким образом, всякая линейная функция является уравнением некоторой прямой.

Отметим частные случаи.

1.Пусть b = 0, т. е. линейная функция определяется уравнением

Решение линейных уравнений y kx

Прямая, определяемая этим уравнением, проходит через начало координат. Здесь у пропорционален х, т. е. если х увеличить (уменьшить) в несколько раз, то и у увеличится (уменьшится) во столько же раз.

2.Пусть Решение линейных уравнений y kx= 0, т. е. tgа = 0, откуда а = 0. Линейная функция определяется уравнением

Решение линейных уравнений y kx

Этому уравнению соответствует прямая, параллельная оси Ох и отстоящая от нее на расстояние b.

На основании всего сказанного в этом параграфе легко решаются следующие задачи.

Задача:

Даны точки А (3, 5) и В(— 1, 4). Нужно узнать, лежат ли эти точки на прямой, уравнение которой имеет вид

Решение линейных уравнений y kx

Решение:

Если точка лежит на прямой, то ее координаты должны удовлетворять уравнению прямой. Поэтому для решения задачи подставим координаты точки А в уравнение (*), получим 5 = 2 x 3 — 1. Это тождество, следовательно, точка А лежит на прямой. Подставляя координаты точки В, получаем 4 = 2(— 1)—1 = —3. Отсюда видно, что точка В не лежит на прямой.

Задача:

Построить прямую, уравнение которой

Решение линейных уравнений y kx

Решение:

Чтобы построить прямую, надо знать, например, две ее точки. Поэтому дадим х произвольное значение, например х = 2, и найдем из уравнения (**) значение

Решение линейных уравнений y kx

Значит, точка A (2, 4) лежит на прямой.

Это первая точка. Теперь дадим х какое-нибудь другое значение, например х = —2, и вычислим у из уравнения (**).

Решение линейных уравнений y kx

Точка B ( — 2, 2) лежит на прямой. Это вторая точка. Строим точки A и B (рис. 15) и проводим через них прямую, это и есть искомая прямая.

Решение линейных уравнений y kx

Видео:ЛИНЕЙНАЯ ФУНКЦИЯ y=kx график линейной функции 7 и 8 классСкачать

ЛИНЕЙНАЯ ФУНКЦИЯ y=kx график линейной функции 7 и 8 класс

Основное свойство линейной функции

Рассмотрим линейную функцию у = Решение линейных уравнений y kxх + b. Найдем значение этой функции при

Решение линейных уравнений y kx

Здесь первое и второе значения х различны, они отличаются друг от друга на величину х2 — х1. Величину разности х2 — х1, на которую изменяется x при переходе от x1 к х2, назовем приращением независимого переменного х. Эту величину часто будем обозначать через h, так что h = x2 — x1. Найдем, насколько изменилось значение у при изменении х1 на h . Для этого вычтем из у2 значение у1

Решение линейных уравнений y kx

Решение линейных уравнений y kx

т. е. приращение линейной функции пропорционально приращению независимого переменного.

Это и есть основное свойство линейной функции. Заметим, что х2 может быть больше, а может быть и меньше, чем х1. Поэтому h = x2 — x1 может быть как положительным, так и отрицательным числом, иначе говоря, приращение h независимого переменного может быть любого знака. То же самое относится и к приращению функции, т. е. к величине у2—у1.

Пример:

Найдем приращение функции y = 0,6x—3, если приращение независимого переменного h = 0,1.

По основному свойству у2—у1 = 0,6 x 0,1 = 0,06.

Приращение этой же функции y = 0,6x—3 , если h = —3, будет равно у2—у1 = 0,6 x (— 3) = —1,8. В этом случае приращения независимого переменного и функции отрицательны, т. е. в этом случае и независимое переменное и функция не увеличиваются, а уменьшаются.

Пример:

Найдем приращение функции у = —2x+10 при изменении х на h = —0,5. Будем иметь

Решение линейных уравнений y kx

Видео:ГРАФИК ФУНКЦИИ y = kx + b | линейная функция | 7 классСкачать

ГРАФИК ФУНКЦИИ  y = kx + b | линейная функция | 7 класс

Задачи на прямую

Задача:

Найти угол y между двумя прямыми, заданными уравнениями

Решение линейных уравнений y kx

Решение:

При пересечении прямых образуются четыре попарно равных угла. Найдя один из них, легко найти и другие. На рис. 16 прямые обозначены соответственно (1) и (2).

Решение линейных уравнений y kx

Угол хАВ является внешним по отношению к треугольнику ABC, поэтому он равен сумме двух внутренних углов треугольника, с ним не смежных, т. е.

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Но углы а1 и а2 непосредственно неизвестны, а известны их тангенсы

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Пример:

Найти угол между прямыми, заданными уравнениями

Решение линейных уравнений y kx

Решение линейных уравнений y kx

применяя формулу (1), получим;

Решение линейных уравнений y kx

Если же будем считать, что

Решение линейных уравнений y kx Решение линейных уравнений y kx

Получены два ответа: сначала найден острый угол между заданными прямыми, а затем — тупой.

Если заданы две параллельные прямые, то углы а1 и а2 равны, как соответственные, следовательно, тангенсы их тоже равны

Решение линейных уравнений y kx

Таким образом, мы приходим к выводу: если прямые параллельны, то их угловые коэффициенты равны.

Если прямые перпендикулярны, то угол между ними равен 90°, т. е. Решение линейных уравнений y kx. Но тангенс прямого угла не существует, поэтому формула (1) не должна давать ответа, а это может быть только в том случае, когда знаменатель равен нулю (на нуль делить нельзя):

Решение линейных уравнений y kx

Это и есть условие перпендикулярности двух прямых. Это условие удобно запомнить в следующей формулировке: если две прямые перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку.

Пример:

Найдем угол между прямыми, заданными уравнениями

Решение линейных уравнений y kx

Здесь угловые коэффициенты (первый равен 3, а второй Решение линейных уравнений y kxобратны по величине и противоположны по знаку, следовательно, рассматриваемые прямые перпендикулярны.

Задача:

Даны две точки: M1(x1, у1) и М2(х2, у2), где Решение линейных уравнений y kx(т. е. эти точки не лежат на одной прямой, параллельной оси Оу). Написать уравнение прямой, проходящей через точки M1 и М2.

Решение:

Искомая прямая не параллельна оси Оу, поэтому ее уравнение можно написать в виде Решение линейных уравнений y kxЗначит, для решения задачи надо определить числа Решение линейных уравнений y kxи b.

Так как прямая проходит через точки М1 и М2, то координаты этих точек должны удовлетворять уравнению ( * ), т. е.

Решение линейных уравнений y kx

В уравнениях ( ** ) и (*** ) все числа, кроме Решение линейных уравнений y kxи b, известны, поэтому эти уравнения можно рассматривать как систему уравнений относительно Решение линейных уравнений y kxи b. Решая систему, находим:

Решение линейных уравнений y kx

Подставляя найденные выражения в уравнение (*), получим

Решение линейных уравнений y kx

Это и есть уравнение прямой, проходящей через две точки, не расположенные на прямой, параллельной оси Оу.

Полученному уравнению можно придать форму, удобную для запоминания, а именно:

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Задача:

Написать уравнение прямой, проходящей через данную точку М(х1,у1) и образующей с осью Ох угол а.

Решение:

Прежде всего найдем угловой коэффициент искомой прямой: он равен тангенсу угла а. Обозначим Решение линейных уравнений y kxЗначит, уравнение прямой можно написать в виде Решение линейных уравнений y kxгде пока число b неизвестно. Так как прямая должна проходить через точку M, то координаты точки М удовлетворяют этому уравнению, т. е.

Решение линейных уравнений y kx

Находим отсюда неизвестное b, получим Решение линейных уравнений y kx. Подставляя найденное в уравнение (*), будем иметь

Решение линейных уравнений y kx

Это и есть уравнение прямой, проходящей через точку М в заданном направлении.

Если в уравнении (4) менять направление, не меняя точку M, то получим уравнение всех прямых, проходящих через заданную точку. Уравнение Решение линейных уравнений y kx, в котором Решение линейных уравнений y kxпеременное, а х1 и у1 не меняются, называется уравнением пучка прямых, проходящих через точку М(х1, у1).

Пример:

Напишем уравнение прямой, проходящей через точку М( — 2, 3) и образующей с осью Ох угол 45°.

Так как tg 45° = 1, то угловой коэффициент равен 1; х1 = —2; у1 = 3. Уравнение прямой запишется в виде

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Общее уравнение прямой. Неявная линейная функция

Рассмотрим уравнение первой степени с двумя неизвестными

Решение линейных уравнений y kx

Решим его относительно у:

Решение линейных уравнений y kx

т. е. мы получили линейную функцию, где Решение линейных уравнений y kx,Решение линейных уравнений y kxУравнения (1) и (2) равносильны, поэтому пара чисел х и у, удовлетворяющих уравнению (2), будет удовлетворять и уравнению (1). Так как уравнению (2) соответствует некоторая прямая, то эта же прямая будет соответствовать и уравнению (1).

Координаты любой точки, лежащей на этой прямой, удовлетворяют уравнению (1), поэтому будем называть его также уравнением прямой.

Рассмотрим особо случай, когда B = 0, так как на нуль делить нельзя.

Уравнение (1) примет вид

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Поэтому, каков бы ни был у, х всегда равен Решение линейных уравнений y kxЭто имеет место для прямой, параллельной оси Оу; в самом деле, на ней можно найти точку с любой ординатой, но все точки этой прямой имеют одну и ту же абсциссу.

Таким образом, любому уравнению первой степени соответствует некоторая прямая. Придавая в уравнении (1) коэффициентам А, В и С различные значения, можно получить любое уравнение первой степени. Поэтому уравнение (1) называют общим уравнением прямой.

Из уравнения (1) (если Решение линейных уравнений y kx) можно определить у, т. е. получить линейную функцию; поэтому говорят, что уравнение (1) определяет неявно линейную функцию или что уравнение (1) есть неявная линейная функция.

Видео:Как построить график линейной функции.Скачать

Как построить график линейной функции.

Система двух уравнений первой степени

Напомним, что две прямые, расположенные на плоскости, могут или пересекаться, или быть параллельными (т. е. не пересекаться), или сливаться (в этом случае можно сказать, что они пересекаются в каждой своей точке).

Рассмотрим систему двух уравнений

Решение линейных уравнений y kx

Каждое из этих уравнений является уравнением прямой. Решить систему — это значит найти значения х и у, которые удовлетворяют и первому и второму уравнениям. Но так как х и у определяют точку, то следовательно, решить систему—это значит найти точку, лежащую и на первой и на второй прямых, т. е. найти точку пересечения прямых.

Пример:

Найдем точку пересечения двух прямых:

Решение линейных уравнений y kx

Решая эту систему, получим: х = 1, у = 2, т. е. прямые пересекаются в точке (1,2) (рис. 17).

Решение линейных уравнений y kx

Пример:

Найдем точку пересечения двух прямых:

Решение линейных уравнений y kx

Решая эту систему, получим:

Решение линейных уравнений y kx

Последнее равенство нелепо, значит, прямые не пересекаются, Рис. 17. т. е. они параллельны.

Пример:

Найдем точку пересечения данных прямых

Решение линейных уравнений y kx

Решая эту систему, получим:

Решение линейных уравнений y kx

Полученное равенство всегда справедливо, т. е. справедливо при любом значении x. Это значит, что две прямые пересекаются в каждой своей точке, что может быть только тогда, когда они сливаются.

Заметим, что два уравнения, рассматриваемые в этом примере, являются равносильными, поэтому они и представляют одну и ту же прямую.

Видео:Линейная функция и её график. Алгебра, 7 классСкачать

Линейная функция и её график. Алгебра, 7 класс

Примеры решения линейной функции

Линейная функция встречается в формулировках многих физических законов и технических задач. Приведем примеры.

Пример:

Если точка движется равномерно по прямой, то ее расстояние от выбранной точки (от начала координат) выражается при помощи уравнения Решение линейных уравнений y kx

где — начальное расстояние, v0 — скорость, t — время; это, как мы уже знаем, есть линейная функция.

Пример:

Закон Ома записывается в виде Решение линейных уравнений y kx

где v — напряжение, R — сопротивление и I — ток. Если не изменяется, то v является линейной функцией тока I .

Пример:

Если стоимость провоза единицы товара по железной дороге равна а руб. за километр, то стоимость v провоза N единиц товара на l км равна Решение линейных уравнений y kx

Если же стоимость товара на месте равна М руб., то после перевозки за него надо заплатить

Решение линейных уравнений y kx

Здесь v—линейная функция l.

Линейная функция встречается в различных областях, но, где бы она ни встречалась, ее всегда можно рассматривать как уравнение прямой. Этим обстоятельством часто пользуются при решении задач.

Задача:

Два города А и В, расстояние между которыми равно 300 км, находятся на одной железнодорожной магистрали. На этой же магистрали между городами А и В надо выбрать пункт С, в котором предполагается устроить склад нефти для снабжения указанных городов. Надо выбрать пункт С так, чтобы общая стоимость перевозок нефти для снабжения города А и города В была наименьшей. Известно, что город А потребляет 400 т нефти, а город В—200 т. Перевозка одной тонны нефти на один километр обходится в а руб.

Решение:

Обозначим расстояние от А до предполагаемого пункта С через х. Тогда расстояние от города В до С равно 300 — х. Стоимость перевозки одной тонны нефти из С в A равна ах руб., а перевозки 400 т—400аx руб. Аналогично перевозка нефти из С в В будет стоить 200а (300 — х) руб. Стоимость всех перевозок, которую обозначим через у, будет выражаться так:

Решение линейных уравнений y kx

Решение линейных уравнений y kx

Это линейная функция. Если примем х за абсциссу, а у за ординату точки, то полученная линейная функция определяет уравнение некоторой прямой. Угловой коэффициент ее равен 200а, т. е. положителен, следовательно, эта прямая образует с осью Ох острый угол и поэтому с увеличением независимого переменного поднимается вверх. По смыслу задачи величина х заключена между 0 и 300, т. е. Решение линейных уравнений y kxПри х = 0 величина у принимает значение 60 000а, а при x = 300— значение 120 000а. Ясно, что 60 000а есть наименьшее из возможных значений, 120 000а— наибольшее.

Так как пункт С надо выбрать так, чтобы стоимость была наименьшей, то его следует расположить в городе A, если же этого сделать нельзя по каким-либо соображениям, то, чем ближе расположить его к A, тем выгодней.

Видео:Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСССкачать

Урок ГРАФИК ЛИНЕЙНОЙ ФУНКЦИИ 7 КЛАСС

Примеры применения линейной функции

Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Решение линейных уравнений y kx

Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx Решение линейных уравнений y kx

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Видео:Алгебра 8 класс (Урок№3 - График функции y=kx)Скачать

Алгебра 8 класс (Урок№3 - График функции y=kx)

Линейная функция, ее свойства и график

теория по математике 📈 функции

Функция, заданная формулой y=kx+b, где х – переменная, k и b – некоторые числа, называется линейной функцией. Переменную х называют независимой переменной, переменную у – зависимой переменной.

Графиком линейной функции является прямая. Для построения прямой достаточно взять два значения х, чтобы получить два значения у и, соответственно, две точки, через которые проходит единственная прямая.

Число k называется угловым коэффициентом прямой.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Свойства линейной функции

  1. Область определения функции – множество всех действительных чисел. То есть в данную формулу мы можем подставлять любое значение х.
  2. Областью значений также является множество всех действительных чисел.
  3. Функция не имеет ни наибольших, ни наименьших значений.
  4. При k – положительном, угол наклона к оси х острый, другими словами – график функции возрастает.
  5. При k отрицательном угол наклона к оси х тупой, то есть график функции – убывает.
  6. При k=0 прямая параллельна оси х.
  7. Частный случай линейной функции: y=kx, где число b=0, эту функцию называют прямой пропорциональностью, график такой функции проходит через начало координат.

Рассмотрим на примерах расположение прямых в координатной плоскости в зависимости от значения чисел k и b.

Пример №1

Построить график функции у=2х – 1. Для того, чтобы удобнее было выполнять вычисления, построение и т.д. сделаем таблицу для значений х и у:

х
у

Для построения графика подбираем два значения х, одно из них желательно брать равное нулю, второе, например 3 (подбираем небольшие числа).

х03
у

Теперь подставляем значения х в формулу и вычисляем соответствующие значения у:

у=2х – 1=2 × 0 – 1= –1;

у=2х – 1=2 × 3 – 1= 5.

Вписываем в таблицу значения у:

х03
у–15

Теперь строим систему координат, отмечаем в ней точки с координатами А(0; –1) и В(3;5),

Проводимость — способность живой ткани проводить возбуждение.

Решение линейных уравнений y kx

Итак, по формуле мы видим, что угловой коэффициент – положительный, значит, график – возрастает, что мы и видим на нашем графике.

Пример №2.

Построить график функции у= –3х+4. Итак, делаем таблицу на два значения, например, возьмем 0 и 2.

х02
у4–2

По формуле видим, что угловой коэффициент отрицательный, значит, прямая будет убывать. Строим убывающую прямую в системе координат через две точки А(0;4) и В(2; –2).

Решение линейных уравнений y kx

Пример №3

Построить график функции у=4. Видим, что в данном случае число х=0, значит, прямая будет проходить через точку с координатой (0;4) параллельно оси х. На графике это выглядит следующим образом:

Решение линейных уравнений y kx

Построить график функции у=3х. Данная функция является частным случаем, когда прямая проходит через начало координат. Поэтому в данном случае можно взять устно одно значение х, например 2, тогда у получим равный 6. Таким образом, имеем две точки (2;6) и (0;0). Строим их в системе координат и проводим через них прямую, которая будет возрастать, так как угловой коэффициент равен 3, т.е. положительный.

Решение линейных уравнений y kx

На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.

Решение линейных уравнений y kx

ассмотрим коэффициенты под №3. Если k 90 0 ) угол с положит.направлением оси абсцисс (Ох). Если b 0. Это соответствует оставшимся графикам А и Б, т.к. они оба наклонены к положительно направлению оси Оx под острым углом ( 0 ). Следовательно, выбор соответствия должен быть выполнен по коэффициенту b.

В 1-й паре коэффициентов b 0, что соответствует графику А, который пересекает ось Оу выше начала координат. Это подтверждает, что и оставшаяся пара А–2 тоже верна.

pазбирался: Даниил Романович | обсудить разбор | оценить

Установите соответствие между функциями и их графиками.

Решение линейных уравнений y kx

Функция представляет собой линейную зависимость, а именно уравнение первого порядка вида:

График данной функции зависит от k и b.

  • если k 0, то функция возрастает, то есть линия идет снизу вверх, как на первых двух рисунках
  • коэффициент b определяет сдвиг по оси y, если b 0, то выше ноля в точке y = b
  • если k >1, то прямая идет круче, чем обычная y = x (как на втором и третьем графике), если k

pазбирался: Даниил Романович | обсудить разбор | оценить

📺 Видео

Линейная функция и ее график. 7 класс.Скачать

Линейная функция и ее график. 7 класс.

функция y=k/x и ее график (гипербола) - 8 класс алгебраСкачать

функция y=k/x и ее график (гипербола) - 8 класс алгебра

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать

Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)
Поделиться или сохранить к себе: