Решение линейных уравнений с помощью таблицы

Методы решения систем уравнений с использованием электронных таблиц MS Excel

Какие основные способы решения систем уравнений применяются учащимися на уроках? Способ подстановки, способ сложения, графический метод.

В данной работе показано, как с помощью электронных таблиц MS Excel можно упростить графический метод решения систем уравнений, а также решение систем линейных уравнений методом Крамера.

Графический метод решения систем уравнений.

Графический метод наглядно показывает решение систем уравнений, но недостатком этого метода считается:

— много времени уходит на построение графиков функций;

— погрешность при построении;

— погрешность нахождения корней системы уравнений.

Многие из этих минусов можно избежать с помощью электронных таблиц MS Excel.

Решить графически системы уравнений с помощью MS Excel.

Решение линейных уравнений с помощью таблицы

Преобразуем данные системы и внесем данные в MS Excel. (см. Приложение1.xls)

Решение линейных уравнений с помощью таблицы

Вид данных графиков функций хорошо известен нам по урокам математики, полученные решения означают, что для первой системы уравнений графики функций пересекаются в двух точках; для второй системы уравнений графики функций касаются в точке; для третьей системы уравнений графики функций не пересекаются. Проиллюстрируем эти решения средствами MS Excel.

ABC
1ху1у2
2-2=А2^2-3*A2-4=-1*A2-4
3-1,5

Ответ: (0;-4), (2;-6)Решение линейных уравнений с помощью таблицы

ABC
1ху1у2
2-2=А2^2-3*A2-4=A2-8
3-1,5

Ответ: (2;-6)

Решение линейных уравнений с помощью таблицы

ABC
1ху1у2
2-2=А2^2-3*A2-4=-1*A2-8,5
3-1,5

Ответ: нет решений

Решение линейных уравнений с помощью таблицы

Построив графики уравнений, выясните, сколько решений имеет система уравнений:

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы

Решение систем линейных уравнений методом Крамера.

Рассмотрим четвертый способ решения систем уравнений, который называется методом Крамера и решается с помощью определителей.

Запишем метод Крамера для систем 2-го порядка.

Решение линейных уравнений с помощью таблицырешение записывается в виде: Решение линейных уравнений с помощью таблицы, где

Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы, система имеет единственное решение — Решение линейных уравнений с помощью таблицы,

Решение линейных уравнений с помощью таблицысистема имеет бесконечное множество решений.

Решение линейных уравнений с помощью таблицысистема не имеет решения.

Для упрощения вычислений можно использовать электронные таблицы MS Excel. В MS Excel есть формула позволяющая упростить процесс подсчета определителя – функция МОПРЕД(диапазон ячеек) (Функция МОПРЕД – возвращает определитель матрицы). Введя коэффициенты системы в ячейки и применив данную функцию можно найти значение определителя матрицы и вычислить корни системы по формуле Крамера.

Решите систему уравнений

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы,

ABCDEFG
143
21-4Решение линейных уравнений с помощью таблицы=МОПРЕД(А1:В2)
3
423
5-9-4Решение линейных уравнений с помощью таблицых=МОПРЕД(А4:В5)х==D5/D2
6
742
81-9Решение линейных уравнений с помощью таблицыу=МОПРЕД(А7:В8)у==D8/D2
ABCDEFG
143
21-4Решение линейных уравнений с помощью таблицы-19
3
423
5-9-4Решение линейных уравнений с помощью таблицых19х=-1
6
742
81-9Решение линейных уравнений с помощью таблицыу-38у=2

Выясните, имеет ли решения система и сколько: а) Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы

Ответ: система имеет бесконечное множество решений.

б) Решение линейных уравнений с помощью таблицы

Ответ: система не имеет решение.

Усложним работу. Рассмотрим решение системы 3 линейных уравнений с 3 неизвестными.

Система трёх линейных уравнений с тремя неизвестными.

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы, Решение линейных уравнений с помощью таблицыРешение линейных уравнений с помощью таблицы

Содержание
  1. Решение системы уравнений в Microsoft Excel
  2. Варианты решений
  3. Способ 1: матричный метод
  4. Способ 2: подбор параметров
  5. Способ 3: метод Крамера
  6. Способ 4: метод Гаусса
  7. Проект»Решение систем линейных уравнений с помощью табличного процессора Excel»
  8. Выберите документ из архива для просмотра:
  9. Описание презентации по отдельным слайдам:
  10. Оглавление.
  11. Ключевые преимущества.
  12. Что дает Microsoft Excel.
  13. Введение.
  14. Понятие табличного редактора
  15. Особенности Microsoft® EXCEL
  16. Ключевые преимущества
  17. Что дает Microsoft Excel
  18. Эффективный анализ и обработка данных
  19. Богатые средства форматирования и отображения данных
  20. Наглядная печать
  21. Совместное использование данных и работа над документами
  22. Обмен данными и работа в Internet
  23. Мастера
  24. Специальные возможности
  25. Области применения
  26. Логика табличного редактора
  27. Вид и основные понятия
  28. Рабочая книга и рабочий лист.
  29. Строка состояния
  30. Основные правила
  31. Ячейка
  32. Структура ячейки Excel:
  33. Блоки ячеек
  34. Вычисления в EXCEL . Формулы и функции.
  35. Формулы
  36. Использование ссылок и имен.
  37. Перемещение и копирование формул. Относительные и абсолютные ссылки.
  38. Функции
  39. Типы функций
  40. Операции с матрицами
  41. 📹 Видео

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Решение системы уравнений в Microsoft Excel

Решение линейных уравнений с помощью таблицы

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

    Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Решение линейных уравнений с помощью таблицы

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Решение линейных уравнений с помощью таблицы

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Решение линейных уравнений с помощью таблицы

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Решение линейных уравнений с помощью таблицы

Решение линейных уравнений с помощью таблицы

Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.

Решение линейных уравнений с помощью таблицы

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

Решение линейных уравнений с помощью таблицы

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Решение линейных уравнений с помощью таблицы

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

Решение линейных уравнений с помощью таблицы

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Решение линейных уравнений с помощью таблицы

    Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Решение линейных уравнений с помощью таблицы

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Решение линейных уравнений с помощью таблицы

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    Решение линейных уравнений с помощью таблицы

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

    Решение линейных уравнений с помощью таблицы

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Решение линейных уравнений с помощью таблицы

    Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Решение линейных уравнений с помощью таблицы

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Решение линейных уравнений с помощью таблицы

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Решение линейных уравнений с помощью таблицы

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Решение линейных уравнений с помощью таблицы

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Решение линейных уравнений с помощью таблицы

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Решение линейных уравнений с помощью таблицы

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    Решение линейных уравнений с помощью таблицы

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

    Решение линейных уравнений с помощью таблицы

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Решение линейных уравнений с помощью таблицы

    Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Решение линейных уравнений с помощью таблицы

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    Решение линейных уравнений с помощью таблицы

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Решение линейных уравнений с помощью таблицы

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Решение линейных уравнений с помощью таблицы

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    Решение линейных уравнений с помощью таблицы

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Решение линейных уравнений с помощью таблицы

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Решение линейных уравнений с помощью таблицы

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Решение линейных уравнений с помощью таблицы

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

    Решение линейных уравнений с помощью таблицы

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Решение линейных уравнений с помощью таблицы

    Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12683 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

    Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

    Проект»Решение систем линейных уравнений с помощью табличного процессора Excel»

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Выберите документ из архива для просмотра:

    Выбранный для просмотра документ prezentatsia_k_dokladu.pptx

    Решение линейных уравнений с помощью таблицы

    Описание презентации по отдельным слайдам:

    Решение линейных уравнений с помощью таблицы

    Решение систем линейных уравнений при помощи Excel.

    Подготовил ученик 10 класса
    грибановского центра образования имени Г. Н. Троепольского
    Челяпин Леонид Алексеевич
    под патронажем Некрыловой Натилии Николаевны.

    Решение линейных уравнений с помощью таблицы

    Особенности Microsoft® EXCEL

    Решение линейных уравнений с помощью таблицы

    Логика табличного редактора

    Решение линейных уравнений с помощью таблицы

    Функции в excel.

    Решение линейных уравнений с помощью таблицы

    Системы линейных алгебраических уравнений

    Решение линейных уравнений с помощью таблицы

    Решение линейных уравнений с помощью таблицы

    Спасибо за внимание

    Выбранный для просмотра документ proekt.doc

    МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ГРИБАНОВСКИЙ ЦЕНТР ОБРАЗОВАНИЯ ИМЕНИ Г.Н. ТРОЕПОЛЬСКОГО»

    ГРИБАНОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА
    ВОРОНЕЖСКОЙ ОБЛАСТИ

    397241, Воронежская обл., пгт Грибановский, улица Суворова, дом 20

    Телефоны: 8(473)48-3-99-24, 8(473)48-3-99-25, 8(473)48-3-99-26,

    ОГРН 1203600019820, ИНН/КПП 3609006318/360901001

    Итоговый индивидуальный проект

    Решение систем линейных уравнений

    Выполнил(а) уч-ся 10 класса

    Челяпин Леонид Алексеевич

    Руководитель проекта Ф.И.О. Некрылова Наталия Николаевна

    пгт Грибановский — 2021 г.

    Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

    Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

    Оглавление.

    Понятие табличного редактора.

    Особенности Microsoft® EXCEL.

    Ключевые преимущества.

    Что дает Microsoft Excel.

    Логика табличного редактора.

    Вычисления в EXCEL . Формулы и функции.

    Системы линейных алгебраических уравнений.

    Алгоритм решения системы линейных алгебраических уравнений методом Крамера.

    Решение систем линейных алгебраических уравнений в среде MS Excel.

    Видео:Решение задач с помощью уравнений. Алгебра 7 классСкачать

    Решение задач с помощью уравнений. Алгебра 7 класс

    Введение.

    Сегодня разработаны программные продукты, с помощью которых рядовой пользователь очень быстро решает прикладные задачи. На решение таких задач в сфере экономики, финансов и статистики у программистов прежних поколений уходили месяцы. Одной из таких программ, завоевавших репутацию надежного инструмента для повседневного аналитического труда, является процессор электронных таблиц Excel.
    Microsoft Excel разработан фирмой Microsoft, и является на сегодняшний день самым популярным табличным редактором в мире. Кроме стандартных возможностей его отличает следующее: он выводит на поверхность центральные функции электронных таблиц и делает их более доступными для всех пользователей. Для облегчения работы упрощены основные функции: создание формул, форматирование, печать, построение графиков.
    Excel — очень мощный инструмент для решения задач, имеющих дело с массивами разнообразных данных, поэтому область его применения обширна, начиная от бухгалтерских и складских задач и заканчивая расчетами энергетики спутниковых линий. В Excel удобно решать задачи линейной алгебры, а именно — работа с матрицами и другие.
    Многие задачи экономического характера сводятся к решению систем линейных уравнений. Наша работа знакомит с функциональными возможностями табличного процессора Microsoft Excel и применением его при изучении решений систем линейных уравнений методом Крамера.

    Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

    АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

    Понятие табличного редактора

    Табличные редакторы (иногда их называют также электронные таблицы) на сегодняшний день, одни из самых распространенных программных продуктов, используемые во всем мире. Они без специальных навыков позволяют создавать достаточно сложные приложения, которые удовлетворяют до 90% запросов средних пользователей.

    Табличные редакторы появились практически одновременно с появлением персональных компьютеров, когда появилось много простых пользователей не знакомых с основами программирования. Первым табличным редактором, получившим широкое распространение, стал Lotus 1-2-3, ставший стандартом де-факто для табличных редакторов:

    · Структура таблицы (пересечения строк и столбцов создают ячейки, куда заносятся данные);

    · Стандартный набор математических

    · Возможности сортировки данных;

    · Наличие средств визуального отображения данных (диаграмм).

    В СССР получили широкое распространение два табличных редактора SuperCalc и Quattro Pro. С появлением Microsoft ® Windows и его приложений стандартом де-факто стал табличный редактор Microsoft ® Excel.

    Видео:Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

    Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

    Особенности Microsoft® EXCEL

    Microsoft Excel ‑ средство для работы с электронными таблицами, намного превышающее по своим возможностям существующие редакторы таблиц, первая версия данного продукта была разработана фирмой Microsoft в 1985 году. Microsoft Excel ‑ это простое и удобное средство, позволяющее проанализировать данные и, при необходимости, проинформировать о результате заинтересованную аудиторию, используя Internet. Microsoft ® Excel разработан фирмой Microsoft, и является на сегодняшний день самым популярным табличным редактором в мире.

    Кроме стандартных возможностей его отличает следующие возможности, он выводит на поверхность центральные функции электронных таблиц и делает их более доступными для всех пользователей. Для облегчения работы пользователя упрощены основные функции, создание формул, форматирование, печать и построение графиков.

    Ключевые преимущества

    · Эффективный анализ и обработка данных;

    · Богатые средства форматирования и отображения данных;

    · Совместное использование данных и работа над документами;

    · Обмен данными и информацией через Internet и внутренние Intranet-сети.

    Что дает Microsoft Excel

    Эффективный анализ и обработка данных

    · Быстрый и эффективный анализ, удобные средства для работы с данными (мастер сводных таблиц позволяет быстро обрабатывать большие массивы данных и получать итоговые результаты в удобном виде);

    · Механизм автокоррекции формул автоматически распознает и исправляет ошибки при введении формул. Microsoft Excel умеет распознавать 15 наиболее распространенных ошибок, которые допускаются пользователями при вводе формул в ячейку. Например, автоматически исправляются ошибки, связанные с неправильными ссылками, полученными в результате перемещения ячеек. Введенный по ошибке символ «х» автоматически преобразовывается в знак умножения и т.д. Естественно, при этом Excel сначала спрашивает пользователя, нужно ли производить исправление;

    · Использование естественного языка при написании формул;

    · Проведение различных вычислений с использованием мощного аппарата функций и формул;

    · Исследование влияния различных факторов на данные;

    · Решение задач оптимизации;

    · Получение выборки данных, удовлетворяющих определенным критериям;

    · Построение графиков и диаграмм;

    · Статистический анализ данных. В Excel для Windows есть настолько мощный аппарат математической статистики, что вы можете заниматься статистическим моделированием.

    Богатые средства форматирования и отображения данных

    Средства форматирования делают оформление таблиц более ярким и понятным (возможности слияния ячеек в электронной таблице, поворот текста в ячейке на любой угол, начертание текста в ячейке с отступом);

    Мастер создания диаграмм позволяет сделать представление данных в таблицах более наглядным (более удобный и мощный мастер создания диаграмм, кроме стандартных, новые типы диаграмм — диаграммы в виде круглых столбиков, тетраэдров, в виде «бубликов» и др.).

    Наглядная печать

    Многие пользователи сталкивались с проблемами при печати сложных электронных таблиц. Многие трудности связаны с недостаточно точным определением области печати, т.е. того, какая часть электронной таблицы будет напечатана. Поэтому Microsoft Excel обеспечивает предварительный просмотр границ печатаемой области. После включения режима отображения границ печатаемых областей поверх таблицы появляется сетка, которая показывает, какая часть таблицы будет напечатана на какой странице. При необходимости уместить на одной странице дополнительное количество столбцов или строк таблицы, достаточно просто перетянуть границу страницы в нужное место и Microsoft Excel сам рассчитает необходимое изменение шрифта и масштаба изображения при печати указанного диапазона ячеек на одной странице.

    Совместное использование данных и работа над документами

    Теперь для пользователей Microsoft Excel доступен режим реальной многопользовательской работы. Несколько разных пользователей могут одновременно работать с одной и той же таблицей и даже документировать внесенные изменения. Аналогично режиму исправлений в Microsoft Word, теперь можно оставлять комментарии о том, кто и когда внес изменения в данную ячейку

    Обмен данными и работа в Internet

    · Возможность использовать самые свежие данные. С помощью Microsoft Excel Вы можете получать их в виде электронных таблиц прямо Web-серверов в Internet. Microsoft Excel содержит встроенные функции, позволяющие легко помещать на Web-сервер документы, созданные в среде Microsoft Excel. К их числу относятся: мастер сохранения документа в формате HTML, средство просмотра содержимого документов Microsoft Excel для пользователей, не работающих с этим приложением и ряд других;

    · Вы можете использовать встроенный Internet Assistant для преобразования таблицы в формат HTML и публикации на Web-сервере. Microsoft Excel позволяет импортировать данные из HTML-документов, найденных на Web-сервере, восстанавливая при этом формат и оформление таблицы. После импорта данные доступны для выполнения любых операций в Microsoft Excel;

    · Web Queries. В Microsoft Excel 97 имеется операция создания запроса к данным, хранящимся на Web-сервере. Можно создать постоянную ссылку на страницу в Internet и данные в таблице будут обновляться автоматически.

    Мастера

    Для облегчения работы в Microsoft Excel предусмотрены различные средства, облегчающие рутинную работу. Одним из таких средств являются Мастера (помощники). Их несколько:

    · Мастер Диаграмм , позволяющий упростить построение диаграмм;

    · Мастер Функций , позволяющий упростить написание функций;

    · Мастер Подсказок , для быстрого поиска информации (хотя он и не является мастером, в строгом смысле этого слова).

    · Мастер Web-страниц , для создания HTML-страницы при помощи Microsoft Excel.

    · Мастер шаблонов , позволяет создать новый шаблон или базу данных.

    · Мастер сводных таблиц позволяет анализировать не только любой срез имеющейся информации, но и упорядочивать столбцы, строки и заголовки страниц методом перетащить и отпустить.

    · Мастер преобразований , позволяет конвертировать документы в Excel из других форматов.

    Специальные возможности

    В Microsoft Excel включены некоторые возможности, которые позволяют упростить работу и выполнить необходимые вам вычисления.

    К первым относится автозаполнение таблицы. Режим Автозаполнение, позволяющий создавать последовательности из числовых или текстовых значений, практически не вводя данные вручную, также расширен. В Microsoft Excel возможно создавать свои собственные режимы автозаполнения. Например, если Вам понадобится создать листы с заголовками типа Январь, Февраль, Март и т.д., режим Автозаполнение к Вашим услугам. Более того, команда Сортировка обрабатывает теперь и пользовательские (т.е. созданные) списки Автозаполнения, так что Вы всегда сумеете отсортировать свои данные.

    Ко второму относится команда Автосуммирование, позволяющая складывать числовые значения одним щелчком мыши, дает возможность сделать это одновременно и со строками, и со столбцами. По этой команде Вы можете подводить общие итоги даже в таблицах с промежуточными итогами.

    Также существует такая возможность, как Подбор параметров (получить необходимый результат изменяя исходные данные) и Поиск решения (нахождение корней уравнений).

    Еще одной интересной особенностью Excel является возможность работы с географическими картами Карта. .

    Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

    РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

    Области применения

    Excel, как видно из всего сказанного выше очень мощный инструмент для решения задач имеющих дело с массивами разнообразных данных, поэтому область его применения обширна, начиная от бухгалтерских и складских задач и заканчивая расчетами энергетики спутниковых линий. В Excel удобно решать задачи линейной алгебры, такие как работа с матрицами и др . Так же есть все возможности по полноценной работе (сортировка, выборка, сводные таблицы, анализ) с базами данных Благодаря наличию языка программирования в Excel возможно создания различных пользовательских программ, которые автоматизируют специфические стандартные задачи.

    Видео:Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСССкачать

    Урок по теме РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ 7 КЛАСС

    Логика табличного редактора

    Любая таблица состоит из строк и столбцов, как правило строки нумеруются цифрами 1, 2, 3 и т.д. до 16384, а столбцам присваивается соответствие латинскому алфавиту A, B, C и т.д. Причем когда алфавит заканчивается, за Z следует AA, AB, AC и т.д. до IV. Пересечения строк и столбцов образует ячейки, каждая ячейка имеет адрес, который обозначается именем столбца и номером строки. Например B5.

    Решение линейных уравнений с помощью таблицыВ ячейки заносятся данные. В дальнейшем при обращении к эти данным всегда идет ссылка на адрес ячейки где они расположены. Например в Е9 расположено число 5. Если необходимо провести какие-либо действия с этими данными например сложить два числа 4 из ячейки A1 и 4 из ячейки C7 и поместить их сумму в ячейку C3, то в ячейке C3 вводится формула =A1+C7 и в ячейки C3 появляется результат 8.

    Видео:Решение системы уравнений методом Крамера 2x2Скачать

    Решение системы уравнений методом Крамера 2x2

    Вид и основные понятия

    Рабочая книга и рабочий лист.

    Рабочий лист — это собственно электронная таблица, основной тип документа, используемый в Excel для хранения и манипулирования данными. Он состоит из ячеек, организованных в столбцы и строки, и всегда является частью рабочей книги.

    Рабочие книги — это файлы MS Excel, которые могут содержать один или несколько рабочих листов. Такие файлы имеют расширение .xls.

    Решение линейных уравнений с помощью таблицыОкно Excel содержит множество различных элементов. Некоторые из них присущи всем программам в среде Windows, остальные есть только в окне Excel.

    Рабочая область главного окна Excel занята окном рабочей книги, состоящей из рабочих листов. Щелкнув мышью на любой ячейке рабочего листа — вы сделаете ее текущей (она пометится рамкой). В поле имени, будет показан адрес текущей ячейки, например А1. Как и во многих других программах в среде Windows, можно представить рабочий лист в виде отдельного окна со своим собственным заголовком — это окно мы будем называть окном рабочей книги, так как в таком окне можно обрабатывать несколько рабочих листов.

    1. Поле названия главного окна.

    3. Кнопки управления

    4. Панели инструментов.

    6. Строка формулы.

    7. Строка состояния

    8. Поле названия окна рабочей книги (дочернее окно Excel).

    9. Активный лист рабочей книги.

    10. Кнопка выделения всего листа.

    11. Активная (текущая) ячейка.

    В окне Excel, как и в других программах Windows, под заголовком окна находится строка меню. Она содержит главное меню Excel. Посредством команд из этого меню можно выполнить все возможные действия над рабочими книгами и данными в таблицах.

    Строка состояния

    Полоса внизу экрана, на которой выводится информация о выбранной команде или выполняемой операции. Выделенная команда коротко описывается в левой части строки состояния. Здесь также указывается информация о выполняемой операции, такой, как открытие или сохранение файла, копирование ячеек или запись макроса. Правая часть строки состояния показывает, включены ли ключи, такие, как CAPS LOCK, SCROLL LOCK или NUM LOCK.

    Основные правила

    После запуска Excel на экране появляется рабочая книга Книга1, содержащая 16 рабочих листов. Каждый лист представляет собой таблицу, состоящую из строк и столбцов.

    На основном экране расположены следующие объекты: строка основного меню, две панели инструментов Стандартная и Форматирование, строка формул, поле имени, строка состояния, полосы прокрутки.

    Взаимодействие с Excel осуществляется посредством выбора команд из основного меню. Все команды являются иерархическими. В результате выбора одной из таких команд на экране появляется ее ниспадающее меню.

    Для выполнения команды из основного меню поместите курсор мыши на требуемую команду и нажмите кнопку мыши.

    Для отказа от выбора опции ниспадающего меню после его появления на экране нажмите клавишу Esc и вы попадете в меню предыдущего уровня.

    Для получения справочной информации нажмите мышью знак ? из основного меню. Появится меню, в котором выберите команду Вызов справки. Также, окно диалога многих команд содержит кнопку Справка, при нажатии которой Excel обеспечит вас информацией о том, как пользоваться этим окном диалога.

    Кнопка Справка, расположенная на панели инструментов Стандартная, добавляет к курсору мыши вопросительный знак ?. После этого информацию о командах и элементах экрана можно получить, если установить в нужное место указатель мыши с вопросительным знаком и нажать левую кнопку мыши.

    После завершения текущего сеанса работы в Excel выполните команду Файл | Выход.

    Ячейка

    Ячейка — это основной элемент электронной таблицы только в ней может содержаться какая-либо информация (текст, значения, формулы )

    Структура ячейки Excel:

    Решение линейных уравнений с помощью таблицы 1-й уровень содержит видимое на экране изображение (т.е. отформатирован­ный текст) или результат вычисления формулы).

    2-й уровень содержит форматы ячейки (формат чисел, шрифты, выключатель (включатель) признак показывать или нет ячейку, вид рамки, защита ячейки).

    3-й уровень содержит формулу, которая может состоять из текста, числа или встроенных функций.

    4-й уровень содержит имя ячейки, это имя может использоваться в формулах других ячеек, при этом обеспечивается абсолютная адресация данной ячейки.

    5-й уровень содержит примечания данной ячейки (произвольный текст). Если ячейка содержит примечание, то в правом верхнем углу появляется красный квадратик (точка)

    Блоки ячеек

    Для работы с несколькими ячейками сразу необходимо выделить блок ячеек. Это выполняется следующим образом: Щелкнув на ячейке и удерживая кнопку мыши, протяните по листу указателем. При этом будет произведено выделение смежных ячеек. Блок описывается двумя адресами, разделенными знаком двоеточия — адресом верхней-левой и нижней-правой ячеек. На рисунке, например, выделен блок: A2:D4.

    Решение линейных уравнений с помощью таблицы

    Решение линейных уравнений с помощью таблицы

    Основным достоинством электронной таблицы Excel является наличие мощного аппарата формул и функций. Любая обработка данных в Excel осуществляется при помощи этого аппарата. Вы можете складывать, умножать, делить числа, извлекать квадратные корни, вычислять синусы и косинусы, логарифмы и экспоненты. Помимо чисто вычислительных действий с отдельными числами, вы можете обрабатывать отдельные строки или столбцы таблицы, а также целые блоки ячеек. В частности, находить среднее арифметическое, максимальное и минимальное значение, средне-квадратичное отклонение, наиболее вероятное значение, доверительный интервал и многое другое.

    Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

    Как найти корни уравнения в Excel с помощью Подбора параметра

    Вычисления в EXCEL . Формулы и функции.

    Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Формулы

    Формулой в Excel называется последовательность символов, начинающаяся со знака равенства “=“. В эту последовательность символов могут входить постоянные значения, ссылки на ячейки, имена, функции или операторы. Результатом работы формулы является новое значение, которое выводится как результат вычисления формулы по уже имеющимся данным.

    Если значения в ячейках, на которые есть ссылки в формулах, меняются, то результат изменится автоматически.

    В качестве примера приведем формулы, вычисляющие корни квадратного трехчлена: ax 2 +bx+c=0. Они введены в ячейки A2 и A3 и имеют следующий вид:

    В ячейках A1, B1 и C1 находятся значения коэффициентов a, b и с, соответственно. Если вы ввели значения коэффициентов a=1, b=-5 и с=6 (это означает, что в ячейках A1, B1 и C1 записаны числа 1, 5 и -6), то в ячейках A2 и A3, где записаны формулы, вы получите числа 2 и ‑3. Если вы измените число в ячейке A1 на -1, то в ячейках с формулами вы получите числа -6 и 1.

    Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

    Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

    Использование ссылок и имен.

    Ссылка однозначно определяет ячейку или группу ячеек рабочего листа. Ссылки указывают в каких ячейках находятся значения, которые нужно использовать в качестве аргументов формулы. С помощью ссылок можно использовать в формуле данные, находящиеся в различных местах рабочего листа, а также использовать значение одной и той же ячейки в нескольких формулах.

    Можно также ссылаться на ячейки, находящиеся на других листах рабочей книги, в другой рабочей книге, или даже на данные другого приложения. Ссылки на ячейки других рабочих книг называются внешними. Ссылки на данные в других приложениях называются удаленными.

    Имя — это легко запоминающийся идентификатор, который можно использовать для ссылки на ячейку, группу ячеек, значение или формулу. Создать имя для ячейки можно в поле имени, или через меню Вставка | Имя | Присвоить. Использование имен обеспечивает следующие преимущества:

    · Формулы, использующие имена, легче воспринимаются и запоминаются, чем формулы, использующие ссылки на ячейки.

    Например, формула “=Активы-Пассивы” гораздо понятнее, чем формула “=F6-D6”.

    · При изменении структуры рабочего листа достаточно обновить ссылки лишь в одном месте — в определении имен, и все формулы, использующие эти имена, будут использовать корректные ссылки.

    · После того как имя определено, оно может использоваться в любом месте рабочей книги. Доступ ко всем именам из любого рабочего листа можно получить с помощью окна имени в левой части строки формул.

    · Вы можете также определить специальные имена, диапазон действия которых ограничивается текущим рабочим листом. Это означает, что эти имена можно использовать лишь на том рабочем листе, на котором они определены. Такие имена не отображаются в окне имени строки формул или окне диалога “Присвоить имя”, если активен другой рабочий лист книги.

    · Excel автоматическое создает имена на основе заголовков строк и столбцов рабочего листа. Подробной информация о создании таких имен содержится в главе “Базы данных”.

    · После того, как имя определено, вы можете:

    · Заменить все соответствующие ссылки этим именем во всех местах рабочего листа.

    Например, определив имя “Прибыль” как “=$F$12”, можно заменить все ссылки на ячейку $F$12 именем “Прибыль”.

    · Быстро перейти на поименованную ссылку, заменить ссылки, вставить ссылку в формулу с помощью окна имени в строке формул.

    Видео:Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

    Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

    Перемещение и копирование формул. Относительные и абсолютные ссылки.

    После того как формула введена в ячейку, вы можете ее перенести, скопировать или распространить на блок ячеек.

    При перемещении формулы в новое место таблицы ссылки в формуле не изменяются, а ячейка, где раньше была формула, становится свободной. При копировании формула перемещается в другое место таблицы, ссылки изменяются, но ячейка, где раньше находилась формула, остается без изменения. Формулу можно распространить на блок ячеек.

    При копировании формул возникает необходимость управлять изменением адресов ячеек или ссылок. Для этого перед символами адреса ячейки или ссылки устанавливаются символы “$”. Изменяться только те атрибуты адреса ячейки, перед которыми не стоит символ “$”. Если перед всеми атрибутами адреса ячейки поставить символ “$”, то при копировании формулы ссылка не изменится.

    Например, если в записи формулы ссылку на ячейку D7 записать в виде $D7, то при перемещении формулы будет изменяться только номер строки “7”. Запись D$7 означает, что при перемещении будет изменяться только символ столбца “D”. Если же записать адрес в виде $D$7, то ссылка при перемещении формулы на этот адрес не изменится и в расчетах будут участвовать данные из ячейки D7. Если в формуле указан интервал ячеек G3:L9, то управлять можно каждым из четырех символов: “G”, “3”, “L” и “9”, помещая перед ними символ “$”.

    Если в ссылке используются символы $, то она называется абсолютной, если символов $ в ссылке нет — относительной. Адреса таких ссылок называются абсолютными и относительными, соответственно.

    Абсолютные адреса при перемещении формул не изменяются, а в относительных адресах происходит смещение на величину переноса.

    Видео:Как построить график линейной функции.Скачать

    Как построить график линейной функции.

    Функции

    Функции в Excel используются для выполнения стандартных вычислений в рабочих книгах. Значения, которые используются для вычисления функций, называются аргументами. Значения, возвращаемые функциями в качестве ответа, называются результатами. Помимо встроенных функций вы можете использовать в вычислениях пользовательские функции, которые создаются при помощи средств Excel.

    Чтобы использовать функцию, нужно ввести ее как часть формулы в ячейку рабочего листа. Последовательность, в которой должны располагаться используемые в формуле символы, называется синтаксисом функции. Все функции используют одинаковые основные правила синтаксиса. Если вы нарушите правила синтаксиса, Excel выдаст сообщение о том, что в формуле имеется ошибка.

    Если функция появляется в самом начале формулы, ей должен предшествовать знак равенства, как и во всякой другой формуле.

    Аргументы функции записываются в круглых скобках сразу за названием функции и отделяются друг от друга символом точка с запятой “;”. Скобки позволяют Excel определить, где начинается и где заканчивается список аргументов. Внутри скобок должны располагаться аргументы. Помните о том, что при записи функции должны присутствовать открывающая и закрывающая скобки, при этом не следует вставлять пробелы между названием функции и скобками.

    В качестве аргументов можно использовать числа, текст, логические значения, массивы, значения ошибок или ссылки. Аргументы могут быть как константами, так и формулами. В свою очередь эти формулы могут содержать другие функции. Функции, являющиеся аргументом другой функции, называются вложенными. В формулах Excel можно использовать до семи уровней вложенности функций.

    Задаваемые входные параметры должны иметь допустимые для данного аргумента значения. Некоторые функции могут иметь необязательные аргументы, которые могут отсутствовать при вычислении значения функции.

    Типы функций

    Для удобства работы функции в Excel разбиты по категориям: функции управления базами данных и списками, функции даты и времени, DDE/Внешние функции, инженерные функции, финансовые, информационные, логические, функции просмотра и ссылок. Кроме того, присутствуют следующие категории функций: статистические, текстовые и математические.

    При помощи текстовых функций имеется возможность обрабатывать текст: извлекать символы, находить нужные, записывать символы в строго определенное место текста и многое другое.

    С помощью функций даты и времени можно решить практически любые задачи, связанные с учетом даты или времени (например, определить возраст, вычислить стаж работы, определить число рабочих дней на любом промежутке времени).

    Логические функции помогают создавать сложные формулы, которые в зависимости от выполнения тех или иных условий будут совершать различные виды обработки данных.

    В Excel широко представлены математические функции. Например, можно выполнять различные операции с матрицами: умножать, находить обратную, транспонировать.

    С помощью статистических функций возможно проводить статистическое моделирование. Кроме того, возможно использовать элементы факторного и регрессионного анализа.

    В Excel можно решать задачи оптимизации и использовать анализ Фурье. В частности, в Excel реализован алгоритм быстрого преобразования Фурье, при помощи которого вы можете построить амплитудный и фазовый спектр.

    Операции с матрицами

    Для операциий над матрицами в Excel применяют следующие средства:

    1. Использование массивов

    2. Встроенные функции: ТРАНСП, МУМНОЖ, МОПРЕД, МОБР

    Массив возникает как непрерывная прямоугольная область данных, которая является ссылкой в указанных выше операциях. Формулы, обрабатывающие массив отличаются от обычных следующим:

    1. перед вводом формулы маркируется вся область массива;

    2. завершается ввод таких формул — нажатием Shift+Ctrl+Enter ;

    3. формула заключается в фигурные скобки и повторяется во всех клетках области

    📹 Видео

    7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменнойСкачать

    7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменной

    Урок 79 Решение текстовых задач с помощью линейных уравнений (7 класс)Скачать

    Урок 79  Решение текстовых задач с помощью линейных уравнений (7 класс)

    Матричный метод решения систем уравненийСкачать

    Матричный метод решения систем уравнений

    Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    Cимплексный метод решения задачи линейного программирования (ЗЛП)Скачать

    Cимплексный метод решения задачи линейного программирования (ЗЛП)
    Поделиться или сохранить к себе: