Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать
Уравнения в целых числах
Немного теории
Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.
Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение
не имеет ненулевых рациональных решений для всех натуральных n > 2.
Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.
В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.
При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:
способ перебора вариантов;
применение алгоритма Евклида;
представление чисел в виде непрерывных (цепных) дробей;
разложения на множители;
решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;
метод бесконечного спуска.
Задачи с решениями
1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.
Запишем уравнение в виде (x – 2y)(x + y) = 7.
Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:
1) x – 2y = 7, x + y = 1;
2) x – 2y = 1, x + y = 7;
3) x – 2y = –7, x + y = –1;
4) x – 2y = –1, x + y = –7.
Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).
Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).
2. Решить в целых числах уравнение:
а) 20х + 12у = 2013;
в) 201х – 1999у = 12.
а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.
Ответ: решений нет.
б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,
Поскольку числа 5 и 7 взаимно простые, то
Значит, общее решение:
х = 1 + 7k, у = 2 – 5k,
где k – произвольное целое число.
Ответ: (1+7k; 2–5k), где k – целое число.
в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:
НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.
Запишем этот процесс в обратном порядке:
1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =
= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =
= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.
Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел
x0 = 1273·12 = 15276, y0 = 128·12 = 1536
является решением уравнения 201х – 1999у = 12.
Общее решение этого уравнения запишется в виде
х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,
или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),
х = 1283 + 1999n, у = 129 + 201n, где n – целое число.
Ответ: (1283+1999n, 129+201n), где n – целое число.
3. Решить в целых числах уравнение:
а) x 3 + y 3 = 3333333;
б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).
а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;
б) в целых числах уравнение x + y = x 2 – xy + y 2 .
а) Решим данное уравнение как квадратное относительно переменной у. Получим
у = х + 9 или у = 16 – х.
Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).
Так как х, у – простые, то из равенства у = 16 – х имеем
С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).
Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).
б) Рассмотрим данное уравнение как квадратное уравнение относительно x:
x 2 – (y + 1)x + y 2 – y = 0.
Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.
Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).
5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?
Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид
Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:
y = xn = n(2n 2 +1) = 2n 3 +n.
Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).
6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.
Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.
Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.
Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.
Поэтому все числа x, y, z, u чётны. Тогда можно записать, что
и исходное уравнение примет вид
Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,
и мы получаем уравнение
Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.
7. Докажите, что уравнение
(х – у) 3 + (y – z) 3 + (z – x) 3 = 30
не имеет решений в целых числах.
Воспользуемся следующим тождеством:
(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).
Тогда исходное уравнение можно записать в виде
(х – у)(y – z)(z – x) = 10.
Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде
Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.
8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .
если х = 1, то у 2 = 1,
если х = 3, то у 2 = 9.
Этим случаям соответствуют следующие пары чисел:
Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как
5! + 6! + . . . + х! = 10n,
можем записать, что
1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.
Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.
Ответ: (1; 1), (1; –1), (3; 3), (3; –3).
9. Решите следующую систему уравнений в натуральных числах:
a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).
3abc > 0, то a 3 > b 3 + c 3 ;
таким образом имеем
b 2 2 + х = у 4 + у 3 + у 2 + у.
Разложив на множители обе части данного уравнения, получим:
х(х + 1) = у(у + 1)(у 2 + 1),
х(х + 1) = (у 2 + у)(у 2 + 1)
Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:
Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:
Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)
Задачи без решений
1. Решить в целых числах уравнение:
б) х 2 + у 2 = х + у + 2.
2. Решить в целых числах уравнение:
а) х 3 + 21у 2 + 5 = 0;
б) 15х 2 – 7у 2 = 9.
3. Решить в натуральных числах уравнение:
4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение
5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.
Видео:Решение линейных уравнений с двумя переменными в целых числах | Алгебра 7 класс #44 | ИнфоурокСкачать
Урок «Решение линейных уравнений с двумя переменными в целых числах»
Краткое описание документа:
Прошлый видеоматериал был посвящен линейным уравнениям, содержащим две переменные. Мы рассмотрели основные свойства подобных выражений, возможности их преобразования и решения, а также графическое отображение зависимости между двумя переменными.
Известно, что подавляющее большинство этих уравнений имеют множество ответов, представленных всегда парой чисел. Эта пара – значения х и у. Рассмотрим возможные варианты корней уравнения следующего вида:
Очевидно, что корнями данного уравнения может быть пара (4, 6):
Или же дроби 1/5 и 1/3:
В обеих случаях получается верное равенство, значит обе пары корней приемлемы в качестве решения представляемого уравнения. Но при этом одна пара является дробями, а вторая представлена целыми числами. Корни уравнений с двумя переменными, имеющие значения в целых числах именуются цельно численными.
Довольно часто в математике встречаются задачи, требующие именно целочисленные решения подобных уравнений. С другой стороны, некоторые вариации, вроде:
Не имеют цельно численных решений вообще. Так как при любых целых значениях х и у получится целое общее выражение левой части (2х + 3у), которое никак не может быть равно дроби – то есть, нарушится принцип сохранения равенства.
Рассмотрим возможные решения уравнения:
Переведем его в форму зависимости, используя перенос через знак равенства и тождественные преобразования:
Вполне очевидно, что сохраняется равенство вида:
Где n – любое натуральное число, которое вполне может быть целым по значению. То есть, уравнение 7х – у = -1 обладает множеством целочисленных решений. Проверим любые целые числа в качестве х:
Нам уже известна общая абстрактная формула для определения любого линейного уравнения с двумя переменными:
Где х и у – переменные, а и b – коэффициенты при переменных, а с – свободный член. Любое уравнение, подобное линейным выражениям с х и у, путем равносильных преобразований можно привести к такому абстрактному виду. Подробное изучение общей формулы позволяет с легкостью выявить некоторые закономерности с точки зрения наличия целочисленных решений. Итак, если задано некое уравнение вида:
При котором свободный член является дробью, то корнями уравнения никак не могут быть цельно численные выражения. Сумма или разность двух целых чисел по закону элементарной алгебры не может быть равна дробному выражению.
Из-за большого количества возможных решений, корни уравнений с двумя переменными иногда имеют вид не пары отдельных чисел, а пары двух индивидуальных формул – для х, и для у. Для примера, решим уравнение:
Для этого, нам необходимо совершить ряд преобразований. Разобьем одночлен 20х на тождественную сумму 18х + 2х:
18х + 2х + 3у = 10
Группируем одночлены, имеющие кратные числовые коэффициенты. Стоит отметить, что переменную х необходимо разбивать на сумму так, что бы получился х с коэффициентом максимально большим и кратным при этом для числового коэффициента переменной у. Так как в нашем примере при у стоит тройка, то х мы разбиваем с максимально допустимым коэффициентом, кратным трем. После группировки выносим общий кратный множитель:
18х + 2х + 3у = 10
18х + 3у + 2х = 10
Пусть выражение в скобках (6х + у) равно некой переменной с, тогда:
Разбиваем значение переменной с по такому же принципу, как разбивали коэффициент при х. При этом нам необходимо подобрать некое число, которое будет кратно двойке (значению при 2х), но не больше трех. Очевидно, что это будет так:
Проводим тождественные изменения:
Обозначим содержимое скобок, как n, тогда:
Подставляем получившееся равенство вместо с:
3(10 – 2n) + 2х = 10
И решаем полученное уравнение относительно переменной х:
3(10 – 2n) + 2х = 10
То уместно записать:
Подставляем известную нам формулу для х, что бы вычислить у:
6(- 10 + 3n) + у = n – (- 10 + 3n)
-60 + 18n + у = n + 10 — 3n
у = n + 10 — 3n + 60 – 18n
Корнями уравнения 20х + 3у = 10 являются два выражения вида:
Где n – любое целое число – 0, 1, 2 и т.д. Таким образом, чтобы описать все многообразие возможных целочисленных решений, проще всего вычислить некоторые формулы для быстрого расчета х и у. Подставляя любые выражения n в эти формулы, можно с легкостью получить искомую пару чисел.
—> —>
Инфоурок |
02.08.2014 |
Алгебра |
Видеоурок |
8249 |
476 |
© 2022 Проект «Уроки математики»
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено!
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако команда проекта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом на электронную почту службы поддержки сайта.
Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №9. Решение уравнений в целых числах.
Перечень вопросов, рассматриваемых в теме
- понятие диофантовых уравнений;
- теоремы для решения уравнений в целых числах;
- основные методы решения уравнений в целых числах.
Глоссарий по теме
Диофантовыми уравнениями называются уравнения вида
Неопределенные уравнения – уравнения, содержащие более одного неизвестного. Под одним решением неопределенного уравнения понимается совокупность значений неизвестных, которая обращает данное уравнение в верное равенство.
Теорема 1. Если НОД(а, b) = d, то существуют такие целые числа х и у, что имеет место равенство ах + bу = d.
Теорема 2. Если уравнение ах + bу = 1, если НОД(а, b) = 1, достаточно представить число 1 в виде линейной комбинации чисел а и b.
Теорема 3. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с не делится на d, то уравнение целых решений не имеет.
Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 1 и с не делится на d, то уравнение целых решений не имеет.
Для доказательства теоремы достаточно предположить противное.
Найти целое решение уравнения 16х — 34у = 7.
(16,34)=2; 7 не делится на 2, уравнение целых решений не имеет.
Теорема 4. Если в уравнении ах + bу = с НОД(а, b) = d>1 и с 2 + 23 = у 2
Перепишем уравнение в виде: у 2 — х 2 = 23, (у — х)(у + х) = 23
Так как х и у – целые числа и 23 – простое число, то возможны случаи:
; ; ; ;
Решая полученные системы, находим:
; ;;;
4. Выражение одной переменной через другую и выделение целой части дроби.
Решить уравнение в целых числах: х 2 + ху – у – 2 = 0.
Выразим из данного уравнения у через х:
Так как х, у – целые числа, то дробь должна быть целым числом.
Это возможно, если х – 1 =
; ;
; ;
5. Методы, основанные на выделении полного квадрата.
Найдите все целочисленные решения уравнения: х 2 — 6ху + 13у 2 = 29.
Преобразуем левую часть уравнения, выделив полные квадраты,
х 2 — 6ху + 13у 2 = (х 2 — 6ху + 9у 2 ) + 4у 2 = (х — 3у) 2 + (2у) 2 = 29, значит (2у) 2 29.
Получаем, что у может быть равен .
1. у = 0, (х — 0) 2 = 29. Не имеет решений в целых числах.
2. у = -1, (х + 3) 2 + 4 =29, (х + 3) 2 = 25, х + 3 = 5 или х + 3 = -5
3. у = 1, (х — 3) 2 +4 =29,
(х — 3) 2 =25, х – 3 = 5 или х – 3 = -5
4. у = -2, (х + 6) 2 + 16 = 29, (х + 6) 2 = 13. Нет решений в целых числах.
5. у=2, (х-6) 2 +16=29, (х-6) 2 =13. Нет решений в целых числах.
Ответ: (2; -1); (-8; -1); (8; 1); (-2; 1).
6. Решение уравнений с двумя переменными как квадратных
относительно одной из переменных.
Решить уравнение в целых числах: 5х 2 +5у 2 +8ху+2у-2х+2=0.
Рассмотрим уравнение как квадратное относительно х:
5х 2 + (8у — 2)х + 5у 2 + 2у + 2 = 0
D = (8у — 2) 2 — 4·5(5у 2 + 2у + 2) = 64у 2 — 32у + 4 = -100у 2 — 40у – 40= = -36(у 2 + 2у + 1) = -36(у + 1) 2
Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.
-36(у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.
7. Оценка выражений, входящих в уравнение.
Решить в целых числах уравнение:
(х 2 + 4)(у 2 + 1) = 8ху
Заметим, что если – решение уравнения, то – тоже решение.
И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:
,
Пусть х > 0, у > 0, тогда, согласно неравенству Коши,
,
тогда их произведение , значит,
Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.
8.Примеры уравнений второй степени с тремя неизвестными.
Рассмотрим уравнение второй степени с тремя неизвестными: х 2 + у 2 = z 2 .
Геометрически решение этого уравнения в целых числах можно истолковать как нахождение всех пифагоровых треугольников, т.е. прямоугольник треугольников, у которых и катеты х,у и гипотенуза z выражаются целыми числами.
По формуле х = uv, , где u и v – нечетные взаимно простые числа (u > v > 0) можно найти те решения уравнения х 2 + у 2 = z 2 , в которых числа х,у и z не имеют общих делителей (т.е. взаимно простые).
Для начальных значений u и v формулы приводят к следующим часто встречающимся равенствам:
3 2 + 4 2 = 5 2 (u = 1, v = 3), 5 2 + 12 2 = 13 2 (u = 1, v = 5), 15 2 + 8 2 = 17 2 (u = 3, v = 5)
Все остальные целые положительные решения этого уравнения получаются умножением решений, содержащихся в формулах, на произвольный общий множитель а.
Разбор решения заданий тренировочного модуля
№1. Тип задания: выбор элемента из выпадающего списка
Решите уравнение 9х+22у-1=0
Решение: Решим данное уравнение, воспользовавшись теоремой 2:
2. 1 = 9 — 4∙2 = 9 — (22 — 9∙2) ∙2 = 9∙5 + 22∙(-2),
т.е. х0= 5, у0= -2 — решение данного уравнения
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Найдите целое решение уравнения 3х+9у=3
Решение: Решим данное уравнение: 3х+9у=3
Разделим обе части уравнения на 3, получим:
- 3 = 1 ∙ 2 + 1
- 1 = 3 — 1∙2, т.е. х0= 1, у0= 0 — решение данного уравнения
🎦 Видео
Решение уравнений в целых числахСкачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
16. Решение линейных уравнений в целых числах. Часть 1. Алексей Савватеев. 100 уроков математикиСкачать
Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6Скачать
Как решать уравнения с двумя переменными в целых числах! Лёгкий способ!Скачать
Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)Скачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать
О решении уравнений в целых числахСкачать
Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?Скачать
Два уравнения в целых числахСкачать
Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать
9 класс. Алгебра. Решение уравнений в целых числах.Скачать
Решите уравнение в целых числах 5x-4y=3 ➜ Как решать Диофантовы уравнения?Скачать
17. Решение линейных уравнений в целых числах. Часть 2. Алексей Савватеев. 100 уроков математики 6+Скачать
Как решать Диофантовы уравнения ➜ Решите уравнение в целых числах 4x+5y=6Скачать
Решите уравнение в целых числах ➜ 2x^2+xy=x+7Скачать