- Решение линейного уравнения в Python
- Решение систем линейных уравнений с помощью Python’s Numpy
- Что такое Система линейных уравнений?
- Решение системы линейных уравнений с Numpy
- Использование методов inv() и dot()
- Использование метода solve()
- Реальный Пример
- Библиотека Sympy: символьные вычисления в Python
- Первые шаги с SymPy
- Используем SymPy как обычный калькулятор
- Символы
- Алгебраические преобразования
- Раскрытие скобок
- Упрощение выражений
- Вычисления
- Вычисления пределов
- Дифференцирование
- Разложение в ряд
- Интегрирование
- Решение уравнений
- Системы линейных уравнений
- Факторизация
- Булевы уравнения
- Линейная алгебра
- Матрицы
- Дифференциальные уравнения
- Английский для программистов
- 💡 Видео
Видео:Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать
Решение линейного уравнения в Python
В данной статье мы разберем программу на python для решения линейного уравнения Программа решает уравнение вида ax = b. Коэффициенты a и b задаются пользователем с клавиатуры. Программа находит решение и выводит его на экран. Если решений бесконечное количество или их нет, то программа оповещает об этом.
Все возможные решения линейного уравнения можно описать так
Если a = 0 и b = 0, то решений бесконечное количество.
Если a = 0 и b ≠ 0, то решений нет.
Если a ≠ 0, то единственное решение будет равно b / a.
Для задания коэффициентов с клавиатуры в Python используется функция ввода вещественного числа float(input()). Подробно о вводе информации с клавиатуры в python
a = float(input(«Введите коэффициент a «))
b = float(input(«Введите коэффициент b «))
В Python, чтобы проверить равенство двух объектов, используется ==, для проверки неравенства объектов используется !=. Для проверки двух условий одновременно используется оператор and. Подробно об условиях в python
Программа на Python для решения линейного уравнения
a = float(input(«Введите коэффициент a «))
b = float(input(«Введите коэффициент b «))
if (a == 0 and b == 0):
print(«Бесконечное количество решений.»)
if (a == 0 and b != 0):
print(«Решений нет.»)
if (a != 0):
print(b/a))
Полезно почитать по теме условия в Python примеры
Пример анкеты, опроса на Python
Видео:Python для самых маленьких. Линейные уравнения. Решение задачСкачать
Решение систем линейных уравнений с помощью Python’s Numpy
Два или более линейных уравнения с одинаковым набором переменных называются системой линейных уравнений. Мы можем решить эти переменные в Python с помощью Numpy.
- Автор записи
Автор: Guest Contributor
Дата записи
Библиотека Numpy может использоваться для выполнения различных математических/научных операций, таких как матричные кросс-и точечные произведения, поиск значений синуса и косинуса, преобразование Фурье и манипулирование формой и т. Д. Слово Numpy-это сокращенное обозначение “Числового питона”.
В этой статье вы увидите, как решить систему линейных уравнений с помощью библиотеки Numpy Python.
Что такое Система линейных уравнений?
В математике система линейных уравнений (или линейная система) представляет собой совокупность двух или более линейных уравнений, включающих один и тот же набор переменных.
Конечная цель решения системы линейных уравнений – найти значения неизвестных переменных. Вот пример системы линейных уравнений с двумя неизвестными переменными, x и y :
Чтобы решить приведенную выше систему линейных уравнений, нам нужно найти значения переменных x и y . Существует множество способов решения такой системы, таких как Исключение переменных, Правило Крамера, Метод сокращения строк и Матричное решение. В этой статье мы рассмотрим матричное решение.
В матричном решении система решаемых линейных уравнений представляется в виде матрицы AX . Например, мы можем представить Уравнение 1 в виде матрицы следующим образом:
Чтобы найти значение переменных x и y в Уравнение 1 , нам нужно найти значения в матрице X . Для этого мы можем взять точечное произведение обратной матрицы A и матрицы B , как показано ниже:
Если вы не знакомы с тем, как найти обратную матрицу, взгляните на эту ссылку, чтобы понять, как вручную найти обратную матрицу. Чтобы понять матричный точечный продукт, ознакомьтесь с этой статьей .
Решение системы линейных уравнений с Numpy
Из предыдущего раздела мы знаем, что для решения системы линейных уравнений необходимо выполнить две операции: инверсию матрицы и матричное точечное произведение. Библиотека Numpy из Python поддерживает обе эти операции. Если вы еще не установили библиотеку Numpy, вы можете сделать это с помощью следующей команды pip :
Теперь давайте посмотрим, как решить систему линейных уравнений с помощью библиотеки Numpy.
Использование методов inv() и dot()
Во-первых, мы найдем обратную матрицу A , которую мы определили в предыдущем разделе.
Давайте сначала создадим матрицу A в Python. Для создания матрицы можно использовать метод array модуля Numpy. Матрицу можно рассматривать как список списков, где каждый список представляет собой строку.
В следующем скрипте мы создаем список с именем m_list , который далее содержит два списка: [4,3] и [-5,9] . Эти списки являются двумя строками в матрице A . Чтобы создать матрицу A с помощью Numpy, m_list передается методу array , как показано ниже:
Чтобы найти обратную матрицу, матрица передается в метод linalg.inv() модуля Numpy:
Следующий шаг-найти точечное произведение между обратной матрицей A и матрицей B . Важно отметить, что матричное точечное произведение возможно только между матрицами , если внутренние размеры матриц равны , то есть количество столбцов левой матрицы должно соответствовать количеству строк в правой матрице.
Для поиска точечного продукта с помощью библиотеки Numpy используется функция linalg.dot () . Следующий скрипт находит точечное произведение между обратной матрицей A и матрицей B , которая является решением уравнения 1 .
Вот, 2 и 4 являются ли соответствующие значения для неизвестных x и y in Уравнение 1 . Для проверки, если вы подключаете 2 на месте неизвестного x и 4 на месте неизвестного y в уравнении 4x + 3y вы увидите , что результат будет равен 20.
Давайте теперь решим систему из трех линейных уравнений, как показано ниже:
Приведенное выше уравнение можно решить с помощью библиотеки Numpy следующим образом:
В приведенном выше скрипте методы linalg.inv() и linalg.dot() соединены вместе. Переменная X содержит решение для уравнения 2 и печатается следующим образом:
Значение для неизвестных x , y и z равно 5, 3 и -2 соответственно. Вы можете подключить эти значения в Уравнение 2 и проверить их правильность.
Использование метода solve()
В предыдущих двух примерах мы использовали методы linalg.inv() и linalg.dot() для нахождения решения системы уравнений. Однако библиотека Numpy содержит метод linalg.dsolve () , который может быть использован для непосредственного нахождения решения системы линейных уравнений:
Вы можете видеть, что выход такой же, как и раньше.
Реальный Пример
Давайте посмотрим, как система линейных уравнений может быть использована для решения реальных задач.
Предположим, продавец фруктов продал 20 манго и 10 апельсинов за один день на общую сумму 350 долларов. На следующий день он продал 17 манго и 22 апельсина за 500 долларов. Если цены на фрукты оставались неизменными в оба дня, то какова была цена одного манго и одного апельсина?
Эта задача легко решается с помощью системы двух линейных уравнений.
Допустим, цена одного манго равна x , а цена одного апельсина равна y . Вышеприведенная проблема может быть преобразована следующим образом:
Решение приведенной выше системы уравнений показано здесь:
Результат показывает, что цена одного манго составляет 10 долларов, а цена одного апельсина-15 долларов.
Видео:СЛАУ в PythonСкачать
Библиотека Sympy: символьные вычисления в Python
Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.
Документацию и исходный код этой библиотеки можно найти на ее официальной странице.
Видео:Решения системы линейных уравнений на Python (Sympy).Скачать
Первые шаги с SymPy
Используем SymPy как обычный калькулятор
В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .
Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.
Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.
В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .
Символы
В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:
После их задания, с ними можно производить различные манипуляции.
С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,
Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:
Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать
Алгебраические преобразования
SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.
Раскрытие скобок
Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:
При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.
Упрощение выражений
Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .
Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .
Видео:Как решить линейное и квадратное уравнение в Python?Скачать
Вычисления
Вычисления пределов
Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .
Также можно вычислять пределы, которые стремятся к бесконечности.
Дифференцирование
Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.
Проверим результат последней функции при помощи определения производной через предел.
tan 2 (?)+1 Результат тот же.
Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.
Разложение в ряд
Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .
Интегрирование
В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:
Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:
Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.
Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).
Решение уравнений
При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .
Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.
Системы линейных уравнений
SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.
Факторизация
Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.
Булевы уравнения
Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .
Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .
Видео:#5. Математические функции и работа с модулем math | Python для начинающихСкачать
Линейная алгебра
Матрицы
Матрицы в SymPy создаются как экземпляры класса Matrix :
В отличие от NumPy , мы можем использовать в матрицах символьные переменные:
И производить с ними разные манипуляции:
Дифференциальные уравнения
При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .
Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .
Теперь решим следующее дифференциальное уравнение:
Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .
Английский для программистов
Наш телеграм канал с тестами по английскому языку для программистов. Английский это часть карьеры программиста. Поэтому полезно заняться им уже сейчас
💡 Видео
34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
Решение систем линейных матричных уравнений через формулы Крамера в PythonСкачать
Решение простых задач на python | Решить квадратное уравнениеСкачать
Программа, определяющая корни квадратного уравнения. Язык программирования Python.Скачать
Решение 1 го нелинейного алгебраического уравнения в PythonСкачать
Решение системы уравнений методом ГауссаСкачать
Решение задач на Python #1Скачать
СМОЖЕШЬ РЕШИТЬ ЭТУ ЗАДАЧУ В ОДНУ СТРОКУ НА PYTHON?Скачать
Математика это не ИсламСкачать
#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy урокиСкачать
Python. Линейный алгоритмСкачать