Решение линейных уравнений на ассемблере

Простая программа на ассемблере x86: Решето Эратосфена

Вступительное слово

По своей профессии я не сталкиваюсь с низкоуровневым программированием: занимаюсь программированием на скриптовых языках. Но поскольку душа требует разнообразия, расширения горизонтов знаний или просто понимания, как работает машина на низком уровне, я занимаюсь программированием на языках, отличающихся от тех, с помощью которых зарабатываю деньги – такое у меня хобби.

И вот, я хотел бы поделиться опытом создания простой программы на языке ассемблера для процессоров семейства x86, с разбора которой можно начать свой путь в покорение низин уровней абстракции.

До ее написания я сформулировал такие требования к будущей программе:

  • Моя программа не должна быть программой под DOS. Слишком много примеров ориентировано на нее в связи с простым API. Моя программа обязательно должна была запускаться на современных ОС.
  • Программа должна использовать кучу – получать в свое распоряжение динамически распределяемую память.
  • Чтобы не быть слишком сложной, программа должна работать с целыми беззнаковыми числами без использования переносов.

Задачей для своей программы я выбрал поиск простых чисел с помощью Решета Эратосфена. В качестве ассемблера я выбрал nasm.

Код я писал с упором больше на стиль и понятность, чем на скорость его выполнения. К примеру, обнуление регистра я проводил не с помощью xor eax, eax , а с помощью mov eax, 0 в связи с более подходящей семантикой инструкции. Я решил, что поскольку программа преследует исключительно учебные цели, можно распоясаться и заниматься погоней за стилем кода в ассемблере.

Итак, посмотрим, что получилось.

С чего начать?

Пожалуй, самая сложная вещь, с которой сталкиваешься при переходе от высокоуровневых языков к ассемблеру, это организация памяти. К счастью, на эту тему на Хабре уже была хорошая статья.

Так же встает вопрос, каким образом на таком низком уровне реализуется обмен данными между внутренним миром программы и внешней средой. Тут на сцену выходит API операционной системы. В DOS, как уже было упомянуто, интерфейс был достаточно простой. К примеру, программа «Hello, world» выглядела так:

В Windows же для этих целей используется Win32 API, соответственно, программа должна использовать методы соответствующих библиотек:

Здесь используется файл win32n.inc, где определены макросы, сокращающие код для работы с Win32 API.

Я решил не использовать напрямую API ОС и выбрал путь использования функций из библиотеки Си. Так же это открыло возможность компиляции программы в Linux (и, скорее всего, в других ОС) – не слишком большое и нужное этой программе достижение, но приятное достижение.

Вызов подпрограмм

Потребность вызывать подпрограммы влечет за собой несколько тем для изучения: организация подпрограмм, передача аргументов, создание стекового кадра, работа с локальными переменными.

Подпрограммы представляют собой метку, по которой располагается код. Заканчивается подпрограмма инструкцией ret . К примеру, вот такая подпрограмма в DOS выводит в консоль строку «Hello, world»:

Для ее вызова нужно было бы использовать инструкцию call :

Для себя я решил передавать аргументы подпрограммам через регистры и указывать в комментариях, в каких регистрах какие аргументы должны быть, но в языках высокого уровня аргументы передаются через стек. К примеру, вот так вызывается функция printf из библиотеки Си:

Аргументы передаются справа налево, обязанность по очистке стека лежит на вызывающей стороне.

При входе в подпрограмму необходимо создать новый стековый кадр. Делается это следующим образом:

Соответственно, перед выходом нужно восстановить прежнее состояние стека:

Для локальных переменных так же используется стек, на котором после создания нового кадра выделяется нужное количество байт:

Так же архитектура x86 предоставляет специальные инструкции, с помощью которых можно более лаконично реализовать эти действия:

Второй параметр инструкции enter – уровень вложенности подпрограммы. Он нужен для линковки с языками высокого уровня, поддерживающими такую методику организации подпрограмм. В нашем случае это значение можно оставить нулевым.

Непосредственно программа

Проект содержит такие файлы:

  • main.asm – главный файл,
  • functions.asm – подпрограммы,
  • string_constants.asm – определения строковых констант,
  • Makefile – сценарий сборки

Рассмотрим код основного файла:

Видно, что программа поделена по смыслу на 5 блоков, оформленных в виде подпрограмм:

  1. input_max_number — с помощью консоли запрашивает у пользователя максимальное число, до которого производится поиск простых; во избежание ошибок значение ограничено константами MIN_MAX_NUMBER и MAX_MAX_NUMBER
  2. allocate_flags_memory — запросить у ОС выделение памяти для массива пометок чисел (простое/составное) в куче; в случае успеха возвращает указатель на выделенную память через регистр eax
  3. find_primes_with_eratosthenes_sieve — отсеять составные числа с помощью классического решета Эратосфена;
  4. print_primes — вывести в консоль список простых чисел;
  5. free_flags_memory — освободить память, выделенную для флагов

Для функций было условлено такое правило: значение возвращается через регистр eax , регистр edx содержит статус. В случае успеха он содержит значение SUCCESS , то есть, 0 , в случае неудачи — адрес строки с сообщением об ошибке, которое будет выведено пользователю.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение линейных уравнений на ассемблере

7.1. Сложение и вычитание.

7.1.1. ADD – команда для сложения двух чисел. Она работает как с числами со знаком, так и без знака.

Логика работы команды:

Возможные сочетания операндов для этой команды аналогичны команде MOV .

По сути дела, это – команда сложения с присвоением, аналогичная принятой в языке C / C ++:

Операнды должны иметь одинаковый размер. Результат помещается на место первого операнда.

После выполнения команды изменяются флаги, по которым можно определить характеристики результата:

  1. Флаг CF устанавливается, если при сложении произошёл перенос из старшего разряда. Для беззнаковых чисел это будет означать, что произошло переполнение и результат получился некорректным.
  2. Флаг OF обозначает переполнение для чисел со знаком.
  3. Флаг SF равен знаковому биту результата (естественно, для чисел со знаком, а для беззнаковых он равен старшему биту и особо смысла не имеет).
  4. Флаг ZF устанавливается, если результат равен 0.
  5. Флаг PF — признак чётности, равен 1, если результат содержит нечётное число единиц.

add ax ,5 ; AX = AX + 5

add dx,cx ;DX = DX + CX

add dx,cl ;Ошибка: разный размер операндов.

7.1.2. SUB — команда для вычитания одного числа из другого. Она работает как с числами со знаком, так и без знака.

Логика работы команды:

Возможные сочетания операндов для этой команды аналогичны команде MOV .

По сути дела, это – команда вычитания с присвоением, аналогичная принятой в языке C / C ++:

Операнды должны иметь одинаковый размер. Результат помещается на место первого операнда.

На самом деле вычитание в процессоре реализовано с помощью сложения. Процессор меняет знак второго операнда на противоположный, а затем складывает два числа.

sub ax ,13 ; AX = AX — 13

sub ax , bx ; AX = AX + BX

sub b x,cl ;Ошибка: разный размер операндов.

7.1.3. Инкремент и декремент. Очень часто в программах используется операция прибавления или вычитания единицы. Прибавление единицы называется инкрементом, а вычитание — декрементом. Для этих операций существуют специальные команды процессора: INC и DEC. Эти команды не изменяют значение флага CF.

Эти команды содержит один операнд и имеет следующий синтаксис:

Логика работы команд:

В качестве инкремента допустимы регистры и память: reg , mem .

inc ax ; AX = AX + 1

dec ax ; AX = AX — 1

7.1.4. NEG – команда для изменения знака операнда.

Логика работы команды:

В качестве декремента допустимы регистры и память: reg , mem .

7.2. Сложение и вычитание с переносом.

В системе команд процессоров x86 имеются специальные команды сложения и вычитания с учётом флага переноса (CF). Для сложения с учётом переноса предназначена команда ADC, а для вычитания — SBB. В общем, эти команды работают почти так же, как ADD и SUB, единственное отличие в том, что к младшему разряду первого операнда прибавляется или вычитается дополнительно значение флага CF.

Они позволяют выполнять сложение и вычитание многобайтных целых чисел, длина которых больше, чем разрядность регистров процессора (в нашем случае 16 бит). Принцип программирования таких операций очень прост — длинные числа складываются (вычитаются) по частям. Младшие разряды складываются(вычитаются) с помощью обычных команд ADD и SUB, а затем последовательно складываются(вычитаются) более старшие части с помощью команд ADC и SBB. Так как эти команды учитывают перенос из старшего разряда, то мы можем быть уверены, что ни один бит не потеряется. Этот способ похож на сложение(вычитание) десятичных чисел в столбик.

На следующем рисунке показано сложение двух двоичных чисел командой ADD:

Решение линейных уравнений на ассемблере

При сложении происходит перенос из 7-го разряда в 8-й, как раз на границе между байтами. Если мы будем складывать эти числа по частям командой ADD, то перенесённый бит потеряется и в результате мы получим ошибку. К счастью, перенос из старшего разряда всегда сохраняется в флаге CF. Чтобы прибавить этот перенесённый бит, достаточно применить команду ADC:

Решение линейных уравнений на ассемблере

//Сложение двух чисел с учетом переноса: FFFFFFAA + FFFF

Видео:ЯЗЫК АССЕМБЛЕРА за 3 МИНУТЫСкачать

ЯЗЫК АССЕМБЛЕРА за  3 МИНУТЫ

Программирование на Ассемблере для начинающих с примерами программ

Многие считают, что Assembler – уже устаревший и нигде не используемый язык, однако в основном это молодые люди, которые не занимаются профессионально системным программированием. Разработка ПО, конечно, хорошо, но в отличие от высокоуровневых языков программирования, Ассемблер научит глубоко понимать работу компьютера, оптимизировать работку с аппаратными ресурсами, а также программировать любую технику, тем самым развиваясь в направлении машинного обучения. Для понимания этого древнего ЯП, для начала стоит попрактиковаться с простыми программами, которые лучше всего объясняют функционал Ассемблера.

IDE для Assembler

Первый вопрос: в какой среде разработки программировать на Ассемблере? Ответ однозначный – MASM32. Это стандартная программа, которую используют для данного ЯП. Скачать её можно на официальном сайте masm32.com в виде архива, который нужно будет распаковать и после запустить инсталлятор install.exe. Как альтернативу можно использовать FASM, однако для него код будет значительно отличаться.

Перед работой главное не забыть дописать в системную переменную PATH строчку:

Программа «Hello world» на ассемблере

Считается, что это базовая программа в программировании, которую начинающие при знакомстве с языком пишут в первую очередь. Возможно, такой подход не совсем верен, но так или иначе позволяет сразу же увидеть наглядный результат:

Для начала запускаем редактор qeditor.exe в папке с установленной MASM32, и в нём пишем код программы. После сохраняем его в виде файла с расширением «.asm», и билдим программу с помощью пункта меню «Project» → «Build all». Если в коде нет ошибок, программа успешно скомпилируется, и на выходе мы получим готовый exe-файл, который покажет окно Windows с надписью «Hello world».

Решение линейных уравнений на ассемблере

Сложение двух чисел на assembler

В этом случае мы смотрим, равна ли сумма чисел нулю, или же нет. Если да, то на экране появляется соответствующее сообщение об этом, и, если же нет – появляется иное уведомление.

Здесь мы используем так называемые метки и специальные команды с их использованием (jz, jmp, test). Разберём подробнее:

  • test – используется для логического сравнения переменных (операндов) в виде байтов, слов, или двойных слов. Для сравнения команда использует логическое умножение, и смотрит на биты: если они равны 1, то и бит результата будет равен 1, в противном случае – 0. Если мы получили 0, ставятся флаги совместно с ZF (zero flag), которые будут равны 1. Далее результаты анализируются на основе ZF.
  • jnz – в случае, если флаг ZF нигде не был поставлен, производится переход по данной метке. Зачастую эта команда применяется, если в программе есть операции сравнения, которые как-либо влияют на результат ZF. К таким как раз и относятся test и cmp.
  • jz – если флаг ZF всё же был установлен, выполняется переход по метке.
  • jmp – независимо от того, есть ZF, или же нет, производится переход по метке.

Программа суммы чисел на ассемблере

Примитивная программа, которая показывает процесс суммирования двух переменных:

В Ассемблере для того, чтобы вычислить сумму, потребуется провести немало действий, потому как язык программирования работает напрямую с системной памятью. Здесь мы по большей частью манипулируем ресурсами, и самостоятельно указываем, сколько выделить под переменную, в каком виде воспринимать числа, и куда их девать.

Получение значения из командной строки на ассемблере

Одно из важных основных действий в программировании – это получить данные из консоли для их дальнейшей обработки. В данном случае мы их получаем из командной строки и выводим в окне Windows:

Также можно воспользоваться альтернативным методом:

Здесь используется invoke – специальный макрос, с помощью которого упрощается код программы. Во время компиляции макрос-команды преобразовываются в команды Ассемблера. Так или иначе, мы пользуемся стеком – примитивным способом хранения данных, но в тоже время очень удобным. По соглашению stdcall, во всех WinAPI-функциях переменные передаются через стек, только в обратном порядке, и помещаются в соответствующий регистр eax.

Циклы в ассемблере

Для создания цикла используется команда repeat. Далее с помощью inc увеличивается значение переменной на 1, независимо от того, находится она в оперативной памяти, или же в самом процессоре. Для того, чтобы прервать работу цикла, используется директива «.BREAK». Она может как останавливать цикл, так и продолжать его действие после «паузы». Также можно прервать выполнение кода программы и проверить условие repeat и while с помощью директивы «.CONTINUE».

Сумма элементов массива на assembler

Здесь мы суммируем значения переменных в массиве, используя цикл «for»:

Команда dec, как и inc, меняет значение операнда на единицу, только в противоположную сторону, на -1. А вот cmp сравнивает переменные методом вычитания: отнимает одно значение из второго, и, в зависимости от результата ставит соответствующие флаги.

С помощью команды jne выполняется переход по метке, основываясь на результате сравнения переменных. Если он отрицательный – происходит переход, а если операнды не равняются друг другу, переход не осуществляется.

Ассемблер интересен своим представлением переменных, что позволяет делать с ними что угодно. Специалист, который разобрался во всех тонкостях данного языка программирования, владеет действительно ценными знаниями, которые имеют множество путей использования. Одна задачка может решаться самыми разными способами, поэтому путь будет тернист, но не менее увлекательным.

🎦 Видео

Решение сложных линейных уравненийСкачать

Решение сложных линейных уравнений

Решение простых линейных уравненийСкачать

Решение простых линейных уравнений

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение

Как решить уравнение #россия #сша #америка #уравненияСкачать

Как решить уравнение #россия #сша #америка #уравнения

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Решение простых линейных уравнений. 6 класс.Скачать

Решение простых линейных уравнений. 6 класс.

Решение линейных уравненийСкачать

Решение линейных уравнений

Решение линейных уравнений. Особый случайСкачать

Решение линейных уравнений. Особый случай

16. Решение линейных уравнений в целых числах. Часть 1. Алексей Савватеев. 100 уроков математикиСкачать

16. Решение линейных уравнений в целых числах. Часть 1. Алексей Савватеев. 100 уроков математики
Поделиться или сохранить к себе: