Программу на C++, решающую системы линейных уравнений методом Крамера, удобно реализовать с функциями для вычисления определителя системы и определителя при неизвестных.
Рассмотрим вариант программы, решающей методом Крамера системы из трёх линейных уравнений с тремя неизвестными. В ней требуется объявить четыре функции: одна (determinant) вычисляет определитель системы, а три (determinantX1, determinant X2, determinantX3) вычисляют определители при неизвестных.
Как и положено при объявлении функций, укажем в них формальные параметры — массивы, хранящие значения определителя системы и определителей при неизвестных. Те же формальные параметры указываются и при описании функций (в конце программы, после функции main). Тело каждой функции содержит и запись математических операций вычисления определителей.
А в вызове функций указываются уже фактические параметры — массивы, храняющие перечисленные данные, но уже состоящие из значений, введённых пользователем.
Далее всё предельно просто: в функции main вычисляются и выводятся значения неизвестных как результаты деления определителей при неизвестных на определитель системы, как и должно быть при решении систем линейных уравнений методом Крамера.
Код C++
По тому же алгоритму несложно уже написать программу, вычисляющую мотодом Крамера системы их двух линейных уравнений с двумя неизвестными, а также вариант программы с ветвлением на случаи систем 2х2 и 3х3.
- Онлайн калькулятор. Решение систем линейных уравнений методом Крамера
- Решить систему линейных уравнений методом Крамера
- Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера
- Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера
- Примеры решения линейных уравнений по методу Крамера с ответами
- Алгоритм решения линейных уравнений по методу Крамера
- Примеры решений линейных уравнений по методу Крамера
- Закажите помощь с работой
- 📹 Видео
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Онлайн калькулятор. Решение систем линейных уравнений методом Крамера
Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Крамера, вы сможете очень просто и быстро найти решение системы.
Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Крамера, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.
Видео:Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать
Решить систему линейных уравнений методом Крамера
Изменить названия переменных в системе
Заполните систему линейных уравнений:
Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера
- В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
- Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
- Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
- Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.
Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2
будет вводится в калькулятор следующим образом:
Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера
- Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
- Вместо x 1, x 2, . вы можете ввести свои названия переменных.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Видео:Решение системы уравнений методом Крамера.Скачать
Примеры решения линейных уравнений по методу Крамера с ответами
Простое объяснение принципов решения линейных уравнений по методу Крамера и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Видео:Решение системы трех уравнений по формулам КрамераСкачать
Алгоритм решения линейных уравнений по методу Крамера
Метод Крамера – способ решения системы линейных уравнений с помощью определителя матрицы при условии, что он не равен нулю. Если мы говорим об определителе, то, соответственно, матрица данной системы может быть только квадратной (число переменных в данной системе уравнений должно быть равно числу её строк).
1. Находим общий определитель матрицы
убеждаемся, что он не равен нулю.
2. Для каждой переменной
находим определитель матрицы
Здесь вместо столбца коэффициентов
подставляем столбец свободных членов системы.
3. Находим значения неизвестных по формуле
Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать
Примеры решений линейных уравнений по методу Крамера
Задание 1
Решить систему уравнений методом Крамера:
Решение
Найдем определитель матрицы :
Теперь заменим первый столбец свободными членами системы:
Заменим второй столбец и то же самое проделаем для
Ответ:
Задание 2
Решить систему уравнений с помощью метода Крамера:
Решение
Находим определитель матрицы
Заменяем первый столбец
свободными членами и находим определитель
Теперь заменим на свободные члены второй столбец матрицы и найдём определитель
Ответ
Задание 3
С помощью метода Крамера решить систему уравнений:
Решение
Как и в предыдущих примерах, сначала находим общий определитель матрицы
Заменяем первый столбец свободными членами:
Найдем определитель матрицы для
заменив на свободные члены второй столбец:
Ответ
Задание 4
Решить систему уравнений методом Крамера:
Решение
Здесь видим матрицу 3х3, следовательно определитель матрицы находим методом треугольников:
Определитель не равен 0, а значит можем продолжать решение.
Замени первый столбец матрицы на свободные члены и найдем её определитель для
Таким образом, определим значение
Таким же способом получим определитель матрицы для
заменив на свободные члены второй столбец:
Также заменим на свободные члены значения третьего столбца и получим определитель матрицы для
Ответ
Задание 5
Решить методом Крамера систему уравнений:
Решение
Аналогично, как в предыдущем примере, найдём определитель матрицы
следовательно, можем продолжать.
Найдем определитель матрицы для
Заменяем коэффициенты первого столбца:
Найдем определитель матрицы для
Проделаем то же самое, но заменив коэффициенты второго столбца.
Найдем определитель матрицы для
заменив на свободные члены третий столбец:
Ответ
Задание 6
Решить систему уравнений методом Крамера:
Решение
Здесь мы видим, что в строках отсутствуют некоторые перемененные. Преобразим вид системы уравнений в квадратный:
Таким образом, наша матрица будет следующего вида:
Найдем определитель матрицы:
Найдем определитель матрицы для
Найдем определитель матрицы для
заменив на свободные члены второй столбец:
Заменим третий столбец и найдем определитель матрицы для
Ответ
Задание 7
С помощью метода Крамера решить систему уравнений:
Решение
Найдем определитель матрицы
Это значит, что данную систему нельзя решить методом Крамера, и мы не можем продолжать решение согласно нашему алгоритму.
Ответ
Метод Крамера нельзя применить к данной системе линейных уравнений
Задание 8
Решить систему уравнений методом Крамера:
Решение
Здесь a – это некоторое реальное число.
Найдем общий определитель матрицы
Найдем определитель матрицы
Для этого подставим в первый столбец матрицы свободные члены системы уравнений.
Таким же способом найдем определитель матрицы
Ответ
Задание 9
Решить систему уравнений методом Крамера:
Решение
Найдем определитель матрицы:
Найдем определитель матрицы для
заменив на свободные члены первый столбец:
Найдем определитель матрицы для
:, заменив на свободные члены второй столбец:
Найдем определитель матрицы для
заменив на свободные члены третий столбец:
Ответ
Задание 10
Решить систему уравнений методом Крамера:
Решение
Преобразим вид системы уравнений в квадратный. Для этого перенесём одну из переменных в свободные члены. Так как, количество строк в системе уравнений меньше, чем количество переменных, то значение одной из переменных будет с параметром. Следовательно, система может выглядеть так:
Таким образом, наша матрица будет следующего вида:
Найдем определитель матрицы:
Если значение определителя будет равно 0, то можно попробовать перенести в свободные члены другую переменную.
Найдем определитель матрицы для переменной
. Здесь заменяем первый столбец на получившуюся сумму свободных членов:
Найдем определитель матрицы для переменной
тем же способом:
Ответ
Средняя оценка 0 / 5. Количество оценок: 0
Поставьте вашу оценку
Сожалеем, что вы поставили низкую оценку!
Позвольте нам стать лучше!
Расскажите, как нам стать лучше?
Закажите помощь с работой
Не отобразилась форма расчета стоимости? Переходи по ссылке
📹 Видео
Решение системы уравнений методом Крамера 2x2Скачать
2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать
10. Метод Крамера решения систем линейных уравнений.Скачать
Решение систем линейных уравнений, урок 2/5. Метод Крамера (метод определителей)Скачать
Линейная алгебра, 8 урок, Метод КрамераСкачать
Решение системы уравнений методом Крамера 4x4Скачать
Линейная алгебра: матрицы, определители, метод Крамера. Высшая математикаСкачать
Линейная алгебра, Матрицы: Метод Гаусса. Высшая математикаСкачать
Решение системы уравнений методом обратной матрицы - bezbotvyСкачать
Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в ExcelСкачать
Метод Гаусса решения систем линейных уравненийСкачать
Метод Крамера Пример РешенияСкачать
Решение системы уравнений методом ГауссаСкачать
12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать
15. Однородная система линейных уравнений / фундаментальная система решенийСкачать