Решение линейных уравнений метод треугольника

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Видео:Математика без Ху!ни. Вычисление определителя методом треугольников.Скачать

Математика без Ху!ни. Вычисление определителя методом треугольников.

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Видео:Определитель матрицы 3 порядка. Как легко найти? Метод треугольников и Саррюса. Просто и наглядноСкачать

Определитель матрицы 3 порядка. Как легко найти? Метод треугольников и Саррюса. Просто и наглядно

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Видео:Вычислить определитель 3 порядка. Правило треугольникаСкачать

Вычислить определитель 3 порядка.  Правило треугольника

Метод Гаусса онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Метод Гаусса

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

Решение линейных уравнений метод треугольника(1)

Запишем систему (1) в матричном виде:

Ax=b(2)
Решение линейных уравнений метод треугольникаРешение линейных уравнений метод треугольника(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

Решение линейных уравнений метод треугольника(4)

Предположим a11≠0. Если это не так, то можно поменять местами эту строку со строкой с ненулевым элементом в столбце 1 (если нет таких строк, то переходим к следующему столбцу). Обнуляем все элементы столбца 1 ниже ведущего элемента a11. Для этого сложим строки 2,3, . m со строкой 1, умноженной на −a21/a11, −a31/a11, . −am1/a11, соответственно. Тогда (4) примет следующий вид:

Решение линейных уравнений метод треугольника(5)

На следующем этапе обнуляем все элементы столбца 2, ниже элемента Решение линейных уравнений метод треугольника. Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце. Далее обнуляем все элементы столбца 2 ниже ведущего элемента a22. Для этого сложим строки 3, . m со строкой 2, умноженной на −a32/a22, . −am2/a22, соответственно. Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

Решение линейных уравнений метод треугольника(6)

Обратим внимание на последние строки. Если Решение линейных уравнений метод треугольника. Решение линейных уравнений метод треугольникаравны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть Решение линейных уравнений метод треугольника. Тогда

Решение линейных уравнений метод треугольникаРешение линейных уравнений метод треугольника
Решение линейных уравнений метод треугольникаРешение линейных уравнений метод треугольника(7)
Решение линейных уравнений метод треугольника

Так как rangA=rang(A|b), то множество решений (7) есть (n−p)− многообразие. Следовательно n−p неизвестных Решение линейных уравнений метод треугольникаможно выбрать произвольно. Остальные неизвестные Решение линейных уравнений метод треугольникаиз системы (7) вычисляются так. Из последнего уравнения выражаем xp через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем xp−1 через остальные переменные и вставляем в предыдущие выражения и т.д. Рассмотрим метод Гаусса на конкретных примерах.

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Примеры решения системы линейных уравнений методом Гаусса

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Решение линейных уравнений метод треугольника

Матричный вид записи: Ax=b, где

Решение линейных уравнений метод треугольника

Для решения системы, запишем расширенную матрицу:

Решение линейных уравнений метод треугольника

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Решение линейных уравнений метод треугольника

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 9/8:

Решение линейных уравнений метод треугольника

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Решение линейных уравнений метод треугольника

Из вышеизложенной таблицы можно записать:

Решение линейных уравнений метод треугольника

Подставив верхние выражения в нижние, получим решение.

Решение линейных уравнений метод треугольника,Решение линейных уравнений метод треугольника,Решение линейных уравнений метод треугольника.

Пример 2. Найти общее решение системы линейных уравнений методом Гаусса:

Решение линейных уравнений метод треугольника

Матричный вид записи: Ax=b, где

Решение линейных уравнений метод треугольника

Для решения системы, построим расширенную матрицу:

Решение линейных уравнений метод треугольника

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Решение линейных уравнений метод треугольника

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на -1:

Решение линейных уравнений метод треугольника

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Решение линейных уравнений метод треугольника

Выразим переменные x1, x2 относительно остальных переменных.

Решение линейных уравнений метод треугольника

где x3, x4− произвольные действительные числа.

Подставив верхние выражения в нижние, получим решение.

Решение линейных уравнений метод треугольника

где x3, x4− произвольные действительные числа.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Решение линейных уравнений метод треугольника

Тогда векторное решение можно представить так:

Решение линейных уравнений метод треугольника

где x3, x4− произвольные действительные числа.

📺 Видео

5 способов вычисления определителя ★ Какой способ лучше?Скачать

5 способов вычисления определителя ★ Какой способ лучше?

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnlineСкачать

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnline

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

6. Вычисление определителя 2 и 3 порядка.Скачать

6. Вычисление определителя 2 и 3 порядка.

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

§10 Правило треугольникаСкачать

§10 Правило треугольника

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Определители матриц 2 и 3 порядка (правило треугольника, Саррюса, разложение по строке)Скачать

Определители матриц 2 и 3 порядка (правило треугольника, Саррюса, разложение по строке)

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4
Поделиться или сохранить к себе: