Решение квадратных уравнений по формуле герона

Теорема Герона

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Формулировка теоремы Герона

Площадь треугольника равна корню из произведения разностей полупериметра $p$ треугольника (рис 1) и каждой из его сторон $a$, $b$ и $c$ на полупериметр:

Треугольник со сторонами $a$, $b$ и $c$.

Решение квадратных уравнений по формуле герона

Формула Герона позволяет вычислить площадь треугольника по известным длинам его сторон.

Эта формула содержится в «Метрике» греческого математика и механика Герона Александрийского и названа в его честь. Герон интересовался треугольниками с целочисленными сторонами. Такие треугольники носят название героновых треугольников. Простейшим героновым треугольником является египетский треугольник — прямоугольный треугольник со соотношениями сторон $3 : 4 : 5$ .

Видео:Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Примеры решения задач

Задание. Вычислите площадь треугольника, зная, что его стороны равны 6 см; 5 см и 2,2 см.

Решение. Полупериметр

Тогда площадь треугольника, согласно формуле Герона, равна:

Ответ. $S=5.28left(mathrm^right)$

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Формула Герона для треугольника

В данной публикации мы рассмотрим формулу Герона, пользуясь которой можно найти площадь треугольника. Также разберем примеры решения задач для того, чтобы закрепить представленный материал.

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Формула площади

Площадь треугольника ( S ) равняется квадратному корню из произведения его полупериметра ( p ) на разности полупериметра и каждой из его сторон ( a, b, c ).

Решение квадратных уравнений по формуле герона

Полупериметр ( p ) вычисляется таким образом:

Решение квадратных уравнений по формуле герона

Примечание: для использования формулы необходимо знать/найти длину всех сторон треугольника.

Формула получила такое название в честь греческого математика и механика Герона Александрийского, который изучал треугольники с целочисленными сторонами и площадью (героновские). К таким, например, относится прямоугольный треугольник с соотношением сторон 3:4:5, который также называют египетским.

Решение квадратных уравнений по формуле герона

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Примеры задач

Задание 1
Найдите площадь треугольника со сторонами 6, 8 и 10 см.

Решение
Для начала найдем полупериметр:
p = (6 + 8 + 10) / 2 = 12 см.

Теперь воспользуемся формулой Герона, подставив в нее заданные значения:
= .

Задание 2
В прямоугольном треугольнике длина гипотенузы равняется 15 см, а одного из катетов – 9 см. Вычислите площадь фигуры.

Решение
Пусть гипотенуза – это c , известный катет – a , а неизвестный – b .

Применим Теорему Пифагора, чтобы найти длину катета b :
b 2 = = = , следовательно,

Полупериметр треугольника равен:
p = (9 + 12 + 15) / 2 = 18 см.

Остается только использовать формулу для нахождения площади:
= = .

Видео:Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Формула Герона

Вы будете перенаправлены на Автор24

Видео:Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.

Предварительные сведения

Для начала введем сведения и обозначения, которые будут необходимы нам в дальнейшем.

Будем рассматривать треугольник $ABC$ с острыми углами $A$ и $C$. Проведем в нем высоту $BH$. Введем следующие обозначения: $AB=c, BC=a, $$AC=b, AH=x, BH=h $(рис. 1).

Решение квадратных уравнений по формуле герона

Введем без доказательств теорему о площади треугольника.

Площадь треугольника определяется как половина произведения длины его стороны, на высоту, проведенную к ней, то есть

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Формула Герона

Введем и докажем теорему о нахождении площади треугольника по трем известным сторонам. Эта формула носит название формулы Герона.

Пусть нам даны три стороны треугольника $a, b и c$. Тогда площадь этого треугольника выражается следующим образом

где $p$ — полупериметр данного треугольника.

Доказательство.

Будем пользоваться обозначениями, введенными на рисунке 1.

Рассмотрим треугольник $ABH$. По теореме Пифагора, получим

Очевидно, что $HC=AC-AH=b-x$

Рассмотрим треугольник $ CBH$. По теореме Пифагора, получим

Приравняем значения квадрата высоты из двух полученных соотношений

Из первого равенства найдем высоту

Так как полупериметр равен $p=frac$, то есть $a+b+c=2p$, то

По теореме 1, получим

Теорема доказана.

Готовые работы на аналогичную тему

Примеры задач на использование формулы Герона

Найти площадь треугольника, если его стороны равняются $3$ см, $6$ см и $7$ см.

Решение.

Найдем вначале полупериметр этого треугольника

По теореме 2, получим

Ответ: $4sqrt$.

Найти площадь параллелепипеда, со сторонами $8$ см и $5$ см и меньшей диагональю, равной $5$ см.

Решение.

Пусть нам дан параллелограмм $ABCD$, где $AD=8 см, AB=5 см и BD=5 см$ (рис. 2).

Решение квадратных уравнений по формуле герона

Так как диагональ параллелограмма является его осью симметрии, то треугольники $ABD$ и $BDC$ равны между собой. Следовательно

Полупериметр треугольника $ABD$ равен

Ответ: $24$.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 20 05 2021

🌟 Видео

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула КорнейСкачать

МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула Корней

Как решить квадратное уравнение (Положительный дискриминант)Скачать

Как решить квадратное уравнение (Положительный дискриминант)

Квадратное уравнение, дискриминант, формула корнейСкачать

Квадратное уравнение, дискриминант, формула корней

Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

Квадратные уравнения #shorts  Как решать квадратные уравнения

Квадратные уравнения: 9 способов решения(Не только дискриминант)Скачать

Квадратные уравнения: 9 способов решения(Не только дискриминант)

КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

КВАДРАТНОЕ УРАВНЕНИЕ дискриминант

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис ТрушинСкачать

Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис Трушин

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Комплексные корни квадратных уравнений. 11 класс.Скачать

Комплексные корни квадратных уравнений. 11 класс.

Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.
Поделиться или сохранить к себе: