Решение квадратных уравнений методом разложения на множители примеры

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Примеры разложения многочленов на множители

Решение квадратных уравнений методом разложения на множители примеры

Видео:Математика| Разложение квадратного трехчлена на множители.Скачать

Математика| Разложение квадратного трехчлена на множители.

Примеры с решением квадратного уравнения

Пример 1.1

Разложить многочлен на множители:
x 4 + x 3 – 6 x 2 .

Выносим x 2 за скобки:
.
Решаем квадратное уравнение x 2 + x – 6 = 0 :
.
Корни уравнения:
, .

Отсюда получаем разложение многочлена на множители:
.

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 – 2 x 4 + 10 x 3 .

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 – 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 – 20 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) .

;
.

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Применим формулы:
a 2 + 2 ab + b 2 = ( a + b ) 2 ;
a 2 – b 2 = ( a – b )( a + b ) :

;

;
.

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = – 1 . Делим многочлен на x – (–1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;

;
.

Видео:Решаем №15 КИМ ЕГЭ | Подготовка к ЕГЭ по математике 2024Скачать

Решаем №15 КИМ ЕГЭ | Подготовка к ЕГЭ по математике 2024

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 6 (члена без x ). То есть целый корень может быть одним из чисел:
–6, –3, –2, –1, 1, 2, 3, 6 .
Подставляем поочередно эти значения:
(–6) 3 – 6·(–6) 2 + 11·(–6) – 6 = –504 ;
(–3) 3 – 6·(–3) 2 + 11·(–3) – 6 = –120 ;
(–2) 3 – 6·(–2) 2 + 11·(–2) – 6 = –60 ;
(–1) 3 – 6·(–1) 2 + 11·(–1) – 6 = –24 ;
1 3 – 6·1 2 + 11·1 – 6 = 0 ;
2 3 – 6·2 2 + 11·2 – 6 = 0 ;
3 3 – 6·3 2 + 11·3 – 6 = 0 ;
6 3 – 6·6 2 + 11·6 – 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен – третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Пример 3.2

Разложить многочлен на множители:
.

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
–2, –1, 1, 2 .
Подставляем поочередно эти значения:
(–2) 4 + 2·(–2) 3 + 3·(–2) 3 + 4·(–2) + 2 = 6 ;
(–1) 4 + 2·(–1) 3 + 3·(–1) 3 + 4·(–1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .

Итак, мы нашли один корень:
x 1 = –1 .
Делим многочлен на x – x 1 = x – (–1) = x + 1 :
Решение квадратных уравнений методом разложения на множители примеры
Тогда,
.

Теперь нужно решить уравнение третьей степени:
.
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, –1, –2 .
Подставим x = –1 :
.

Итак, мы нашли еще один корень x 2 = –1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид:
.

Автор: Олег Одинцов . Опубликовано: 18-06-2015

Видео:Решение уравнений с помощью разложения на множители | Алгебра 7 класс #23 | ИнфоурокСкачать

Решение уравнений с помощью разложения на множители | Алгебра 7 класс #23 | Инфоурок

Разложение квадратного трёхчлена на множители

Видео:Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Решение квадратных уравнений методом разложения на множители примеры

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Решение квадратных уравнений методом разложения на множители примеры

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Решение квадратных уравнений методом разложения на множители примеры

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Решение квадратных уравнений методом разложения на множители примеры

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Решение квадратных уравнений методом разложения на множители примеры

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Решение квадратных уравнений методом разложения на множители примеры

Раскроем скобки там где это можно:

Решение квадратных уравнений методом разложения на множители примеры

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Решение квадратных уравнений методом разложения на множители примеры

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Решение квадратных уравнений методом разложения на множители примеры

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Решение квадратных уравнений методом разложения на множители примеры

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Решение квадратных уравнений методом разложения на множители примеры

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Решение квадратных уравнений методом разложения на множители примеры

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства Решение квадратных уравнений методом разложения на множители примерыи Решение квадратных уравнений методом разложения на множители примеры

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Решение квадратных уравнений методом разложения на множители примеры

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Решение квадратных уравнений методом разложения на множители примеры

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Решение квадратных уравнений методом разложения на множители примеры

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

Решение квадратных уравнений методом разложения на множители примеры

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Решение квадратных уравнений методом разложения на множители примеры

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Решение квадратных уравнений методом разложения на множители примеры

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Решение квадратных уравнений методом разложения на множители примеры

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Решение квадратных уравнений методом разложения на множители примеры

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Решение квадратных уравнений методом разложения на множители примеры

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Решение квадратных уравнений методом разложения на множители примеры

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

Решение квадратных уравнений методом разложения на множители примеры

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Решение квадратных уравнений методом разложения на множители примеры

Видео:Разложение квадратного трехчлена на множители. 8 класс.Скачать

Разложение квадратного трехчлена на множители. 8 класс.

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Решение квадратных уравнений методом разложения на множители примеры

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Во вторых скобках можно заменить вычитание сложением:

Решение квадратных уравнений методом разложения на множители примеры

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Решение квадратных уравнений методом разложения на множители примеры

Воспользуемся формулой разложения:

Решение квадратных уравнений методом разложения на множители примеры

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Решение квадратных уравнений методом разложения на множители примеры

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Решение квадратных уравнений методом разложения на множители примеры

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Решение квадратных уравнений методом разложения на множители примеры

Воспользуемся формулой разложения:

Решение квадратных уравнений методом разложения на множители примеры

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Решение квадратных уравнений методом разложения на множители примеры

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби Решение квадратных уравнений методом разложения на множители примеры, а произведение корней — дроби Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Решение квадратных уравнений методом разложения на множители примеры

Теперь из второго равенства выразим k . Так мы найдём его значение.

Решение квадратных уравнений методом разложения на множители примеры

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Решение квадратных уравнений методом разложения на множители примеры

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим Решение квадратных уравнений методом разложения на множители примеры. Если поменять местами сомножители, то получится Решение квадратных уравнений методом разложения на множители примеры. То есть коэффициент a станет равным Решение квадратных уравнений методом разложения на множители примеры

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Решение квадратных уравнений методом разложения на множители примеры

Найдём корни квадратного трёхчлена:

Решение квадратных уравнений методом разложения на множители примеры

Воспользуемся формулой разложения:

Решение квадратных уравнений методом разложения на множители примеры

Видео:Разложение на множители. 7 класс. Вебинар | МатематикаСкачать

Разложение на множители. 7 класс. Вебинар | Математика

Задания для самостоятельного решения

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Решение квадратных уравнений методом разложения на множители примеры

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Видео:Разложение кубических выражений на множителиСкачать

Разложение кубических выражений на множители

Решение квадратных уравнений методом разложения на множители примеры

Определение 1. Квадратным уравнением называют уравнение вида

где коэффициенты а, b, с — любые действительные числа, причем а ≠ 0.

Коэффициенты а, b, с различают по названиям: апервый, или старший, коэффициент; bвторой коэффициент, или коэффициент при х; ссвободный член.

Определение 2. Квадратное уравнение называют приведенным, если его старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

— неприведенное квадратное уравнение (старший коэффициент равен 2), а уравнение

— приведенное квадратное уравнение.

Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.

Определение 3. Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля. Неполное квадратное уравнение — это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b, с равен нулю.

Обратите внимание: об ах 2 речи нет, этот член всегда присутствует в квадратном уравнении.

Опрелеление 4. Корнем квадратного уравнения

называют всякое значение переменной х, при котором квадратный трехчлен

обращается в нуль; такое значение переменной х называют также корнем квадратного трехчлена.

Можно сказать и так: корень квадратного уравнения

— это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство 0 = 0.

Решить квадратное уравнение — значит найти все его корни или установить, что корней нет.

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Рассмотрим несколько таких уравнений.

Пример 1. Решить неполные квадратные уравнения:

Поэтому либо х = 0, либо 2х — 7 = 0, откуда находим х = 3,5. Итак, уравнение имеет два корня: х1 = 0, х2 = 3,5.

Уравнение имеет два корня: х1 = 0, х2 = 5.

Ранее, мы уже говорили о том, что уравнение вида х 2 = а, где а > О, имеет два корня: и . Значит, для уравнения х 2 = 16 получаем х1 = 4, x2 = — 4 (мы учли, что ).

Допускается более экономная запись:

Уравнение имеет два корня: И в этом случае можно записать короче

Так как выражение Зx 2 неотрицательно при любых значениях х, то уравнение Зx 2 = — 10 не имеет корней. Иными словами, нет ни одного числа, подстановка которого вместо переменной х обратила бы это уравнение в верное числовое равенство.

Иногда в таких случаях уточняют: нет действительных корней. Дело в том, что в математике, кроме действительных чисел, рассматриваются так называемые мнимые числа; мнимые корни у этого уравнения есть.

е) Если 5x 2 = 0, то x 2 = 0, откуда x = 0 единственный корень уравнения.
Этот пример показывает, как решаются неполные квадратные уравнения:

1. Если уравнение имеет вид ах 2 = 0, то оно имеет один корень х = 0.

2. Если уравнение имеет вид , то используется метод разложения на множители: ; значит, либо x = 0, либо ах + b = 0. В итоге получаем два корня:

3. Если уравнение имеет вид , то его преобразуют к виду и далее . В случае, когда — отрицательное число, уравнение не имеет корней (значит, не имеет корней и исходное уравнение ). В случае, когда

— положительное число, т. е. , где m > 0, уравнение х 2 = m имеет два корня: (в этом случае, как мы условились выше, допускается более короткая запись:
).

Неполное квадратное уравнение, как мы только что видели, может иметь два корня, один корень, ни одного корня. То же можно сказать и о полном квадратном уравнении. Почему?

Мы с вами знаем, что графиком функции является парабола. Корнями квадратного уравнения служат абсциссы точек пересечения параболы с осью х. Парабола может пересекать ось х в двух точках, может касаться оси х, т. е. иметь с ней лишь одну общую точку, может вообще не пересекаться с осью х (рис. 92, а, б, в). Это значит, что квадратное уравнение может иметь либо два корня, либо один корень, либо вообще не иметь корней.

Конечно, неплохо знать, сколько корней имеет квадратное уравнение, но еще лучше уметь находить эти корни. Если уравнение неполное, то, как мы видели выше, особых проблем не возникает. А если мы имеем полное квадратное уравнение? Ниже на примере одного такого уравнения напомним, какими способами мы пользовались до сих пор, когда приходилось встречаться с квадратным уравнением.

Пример 2. Решить уравнение х 2 — 4х + 3 = 0.

I способ. Рассмотрим квадратный трехчлен х2 — 4х + 3 и разложим его на множители, используя способ группировки; предварительно представим слагаемое — 4х в виде — х — Зх. Имеем

Значит, заданное уравнение можно переписать в виде (х — 1) (х — 3) = 0, откуда ясно, что уравнение имеет два корня; х1 = 1, х2 = 3; при х = 1 обращается в нуль множитель х — 1, а при х = 3 обращается в нуль множитель х — 3.

II способ. Рассмотрим квадратный трехчлен х 2 — 4х + 3 и разложим его на множители, используя метод выделения полного квадрата; предварительно представим слагаемое 3 в виде 4-1. Имеем

Воспользовавшись формулой разности квадратов, получим

Рассуждая, как и в I способе, находим, что .

III способ. Построим график функции :

1) Имеем Значит, вершиной параболы является точка (2; -1), а осью параболы — прямая х = 2.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = 1 и х = 3. Имеем ; построим на координатной плоскости точки (1; 0) и (3; 0).

3) Через точки (1; 0), (2; -1), (3;0) проводим параболу (рис. 93).

Корнями уравнения х 2 — 4х + 3 = 0 служат абсциссы точек пересечения параболы с осью х. Таких точек две: (1; 0) и (3; 0). Итак, х1 = 1, х2 = 3.

IV способ. Преобразуем уравнение к виду х 2 — 4х — 3. Построим в одной системе координат графики функций у = х 2 и у = 4х — 3 (рис. 94). Они пересекаются в точках А( 1; 1) и B(3; 9). Корнями уравнения служат абсциссы точек А и B, поэтому х1 = 1, х2 = 3.

V способ. Преобразуем уравнение к виду x 2 + 3 = 4х. Построим в одной системе координат графики функций у = х 2 + 3 и у = 4х (рис. 95). Они пересекаются в точках А (1; 4) и B (3; 12). Корнями уравнения служат абсциссы точек А и B, таким образом,

VI способ. Преобразуем уравнение к виду и далее , т. е. . Построим в одной системе координат параболу у = (х — 2) 2 и прямую у = 1 (рис. 96). Они пересекаются в точках А (1; 1) и B(3; 1). Корнями уравнения служат абсциссы точек А и B, следовательно, .

VII способ. Разделив почленно обе части уравнения на х, получим

Построим в одной системе координат гиперболу прямую у = х — 4. Они пересекаются в точках А (1; -3) и (3; — 1) (рис. 97). Корнями уравнения служат абсциссы точек А и B, значит,

Итак, мы решили уравнение х 2 — 4х + 3 = 0 семью способами. Тем не менее знание этих способов не есть, как говорится, панацея от всех бед. Ведь наши успехи в решении квадратных уравнений зависели до сих пор от наличия одного из двух благоприятных обстоятельств:

1) квадратный трехчлен удавалось разложить на множители;

2) графики, которые мы использовали для графического решения уравнения, пересекались в «хороших» точках.

Надеяться на такие подарки судьбы математики, естественно, не могли. Они искали универсальный способ, пригодный для решения любых квадратных уравнений, и нашли его.

💥 Видео

Квадратные уравнения. Разложение на множителиСкачать

Квадратные уравнения. Разложение на множители

Решение квадратных уравнений методом разложения на множители.Скачать

Решение квадратных уравнений методом разложения на множители.

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Математика - Разложение трехчлена на множителиСкачать

Математика - Разложение трехчлена на множители

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Метод выделения полного квадрата. 8 класс.Скачать

Метод выделения полного квадрата. 8 класс.

Метод неопределенных коэффициентов. 10 класс.Скачать

Метод неопределенных коэффициентов. 10 класс.

Произведение многочленов. Разложение многочлена на множители способом группировки. 7 класс.Скачать

Произведение многочленов. Разложение многочлена на множители способом группировки. 7 класс.

Решение уравнений с помощью разложения на множители.Скачать

Решение уравнений с помощью разложения на множители.

Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика
Поделиться или сохранить к себе: