Содержание:
Задание комплексных чисел в тригонометрической форме удобно при выполнении над числами действий умножения, деления, возведения в степень и извлечения корня.
Найдем произведение двух комплексных чисел, записанных в тригонометрической форме; пусть
Выражения, стоящие в круглых скобках, можно упростть с помощью известных формул (115.4), (116.1):
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Доказано правило: для умножения чисел, заданных в тригонометрической форме у их модули надо перемножить, а аргументы сложить.
Это правило остается верным для любого количества сомножителей.
- Примеры с решением
- Тригонометрическая форма комплексных чисел
- 1. Тригонометрическая форма
- 2. Умножение и деление комплексных чисел
- 3. Формула Муавра
- 4. Дополнение 1. Геометрический подход
- 5. Дополнение 2. Как найти аргумент?
- 5.1. Точки на координатных осях
- 5.2. Точки с арктангенсом
- Квадратное уравнение с комплексными корнями
- Готовые работы на аналогичную тему
- 📹 Видео
Примеры с решением
Пример 1.
Найти произведение чисел
Решение:
Так как деление—действие, обратное умножению, то легко вывести следующее правило: для выполнения деления двух комплексных чисел, заданных в тригонометрической форме, следует их модули разделитьу а аргументы вычесть:
Возможно вам будут полезны данные страницы:
Пример 2.
Найти частное от деления числа на число
Решение:
Находим по формуле (17.2):
Используем теперь равенство (17,1) для возведения произвольного комплексного числа в натуральную степень Для этого придется модуль этого числа взять множителем раз и аргумент взять слагаемым раз. Это приводит к равенству
Равенство (17.3) называется формулой Муавра. Из нее следует, что для возведения комплексного числа в любую натуральную степень его модуль нужно возвести в эту степень у а аргумент умножить на показатель степени.
Пример 3.
Вычислить
Решение:
В соответствии с формулой Муавра (17.3)
Если число задано в алгебраической форме то для возведения его в степень с помощью формулы Муавра надо предварительно записать его в тригонометрической форме.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Формула Муавра. Возведение комплексного числа в степеньСкачать
Тригонометрическая форма комплексных чисел
Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».
Сегодня мы узнаем:
Начнём с ключевого определения.
Видео:Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать
1. Тригонометрическая форма
Определение. Тригонометрическая форма комплексного числа — это выражение вида
[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]
где $left| z right|$ — модуль комплексного числа, $text!!varphi!!text$ — некоторый угол, который называется аргумент комплексного числа (пишут $text!!varphi!!text=arg left( z right)$).
Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:
Записать в тригонометрической форме число $z=sqrt+i$.
Переписываем исходное число в виде $z=sqrt+1cdot i$ и считаем модуль:
Выносим модуль за скобки:
[z=sqrt+1cdot i=2cdot left( frac<sqrt>+fraccdot i right)]
Вспоминаем тригонометрию, 10-й класс:
Понятно, что вместо $frac<text!!pi!!text>$ с тем же успехом можно взять аргумент $frac<13text!!pi!!text>$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:
Записать в тригонометрической форме число $z=-1-i$.
Видео:Комплексные корни квадратного уравненияСкачать
2. Умножение и деление комплексных чисел
Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.
Теорема. Пусть даны два комплексных числа:
[begin & <_>=left| <_> right|cdot left( cos alpha +isin alpha right) \ & <_>=left| <_> right|cdot left( cos beta +isin beta right) \ end]
Тогда их произведение равно
[<_>cdot <_>=left| <_> right|cdot left| <_> right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]
А если ещё и $left| <_> right|ne 0$, то их частное равно
Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!
Найти произведение и частное двух комплексных чисел:
[begin <_>cdot <_> & =2cdot 5cdot left( cos left( frac+frac right)+isin left( frac+frac right) right)= \ & =10cdot left( cos frac+isin frac right) \ end]
[begin frac<<_>><<_>> & =fraccdot left( cos left( frac-frac right)+isin left( frac-frac right) right)= \ & =0,4cdot left( cos frac+isin frac right) \ end]
По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)
Видео:Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !Скачать
3. Формула Муавра
Пусть дано комплексное число в тригонометрической форме:
[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]
Возведём его в квадрат, умножив на само себя:
[begin <^> & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text!!varphi!!text!!varphi!!text right)+isin left( text!!varphi!!text!!varphi!!text right) right)= \ & =<^>cdot left( cos 2text!!varphi!!text+isin 2text!!varphi!!text right) \ end]
Затем возведём в куб, умножив на себя ещё раз:
Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.
Формула Муавра. При возведении всякого комплексного числа
[z=left| z right|cdot left( cos varphi +isin varphi right)]
в степень $nin mathbb$ получим
Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb$, а не только натуральном. Но об этом позже. Сейчас примеры:
Представим первое число в тригонометрической форме:
[begin sqrt-i & = 2cdot left( frac<sqrt>+icdot left( -frac right) right)= \ & =2cdot left( cos left( -frac right)+isin left( -frac right) right) \ end]
По формуле Муавра:
Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.
Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:
Теперь второе число запишем в комплексной форме:
По формуле Муавра:
Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
4. Дополнение 1. Геометрический подход
Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:
А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:
А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:
Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние
Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:
[begin & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end]
С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:
[begin a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end]
Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).
Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:
Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:
Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:
На практике основная трудность заключается именно в поиске подходящего аргумента.
Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать
5. Дополнение 2. Как найти аргумент?
В учебниках пишут много разной дичи, типа вот этой:
Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.
5.1. Точки на координатных осях
Для начала рассмотрим точки, лежащие осях координат.
Тут всё очевидно:
- На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
- На отрицательной — $varphi =pi $ (синяя точка $B$).
- На положительной полуоси ординат $varphi =frac$ (зелёная точка $B$).
- На отрицательной — $varphi =frac$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac$ — результат будет тем же самым.:)
5.2. Точки с арктангенсом
А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол
Очевидно, это острый угол:
Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол $<_>$ от горизонтальной оси в эту четверть.
В правой полуплоскости мы откладываем от «нулевого» луча:
Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:
[begin 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatornamefrac end]
Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:
[6-6i=6sqrtcdot left( cos left( -frac right)+isin left( -frac right) right)]
В левой полуплоскости откладываем от луча, соответствующего углу $pi $:
Итого для точки $Cleft( -2;5 right)$ имеем:
[begin -2+5i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi -operatornamefrac end]
И, наконец, для точки $Dleft( -5;-3 right)$:
[begin -5-3i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi +operatornamefrac end]
Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.
А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Квадратное уравнение с комплексными корнями
Вы будете перенаправлены на Автор24
Рассмотрим решение уравнений с комплексными корнями и коэффициентами.
Двучленным называется уравнение вида $x^ =A$.
Рассмотрим три случая:
Решить уравнение: $x^ =8$.
Так как $A>0$, то $x_ =sqrt[] cdot left(cos frac +icdot sin frac right),, , , k=0. 2$.
При $k=0$ получаем $x_ =sqrt[] cdot left(cos 0+icdot sin 0right)=sqrt[] =2$.
При $k=1$ получаем
[x_ =sqrt[] cdot left(cos frac +icdot sin frac right)=sqrt[] cdot (-frac +frac <sqrt> cdot i)=2cdot (-frac +frac <sqrt> cdot i)=-1+sqrt cdot i.]
При $k=2$ получаем
[x_ =sqrt[] cdot left(cos frac +icdot sin frac right)=sqrt[] cdot (-frac -frac <sqrt> cdot i)=2cdot (-frac -frac <sqrt> cdot i)=-1-sqrt cdot i.]
Решить уравнение: $x^ =1+i$.
Готовые работы на аналогичную тему
Так как $A$ — комплексное число, то
Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(cos varphi +icdot sin varphi )$.
По условию $a=1,b=1$.
Вычислим модуль исходного комплексного числа:
Вычислим аргумент исходного комплексного числа:
[varphi =arg z=arctgfrac =arctg1=frac ]
Подставим полученные значения и получим:
Уравнение перепишем в виде:
При $k=0$ получаем $x_ =sqrt[] <sqrt> cdot left(cos frac +icdot sin frac right)=sqrt[] <sqrt> cdot left(cos frac +icdot sin frac right)=sqrt[] cdot left(cos frac +icdot sin frac right)$.
При $k=1$ получаем
При $k=2$ получаем
Квадратным называется уравнение вида $ax^ +bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.
Решение квадратного уравнения находится с помощью дискриминанта $D=b^ -4ac$, при этом
В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.
Решить уравнение $x^ +2x+5=0$ и изобразить корни на плоскости.
[D=2^ -4cdot 1cdot 5=4-20=-16.]
Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.
В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.
Комплексное число вида $overline=a-bi$ называется числом комплексно-сопряженным для $z=a+bi$.
Известно, что если $x_ $ являются корнями квадратного уравнения $ax^ +bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ )(x-x_ )=0$. В общем случае $x_ $ являются комплексными корнями.
Зная корни уравнения $x_ =1pm 2i$, записать исходное уравнение.
Запишем уравнение следующим образом:
[x^ -(1-2i)cdot x-xcdot (1+2i)+(1-2i)cdot (1+2i)=0] [x^ -x+2icdot x-x-2icdot x+1-4i^ =0] [x^ -2x+1+4=0] [x^ -2x+5=0]
Следовательно, $x^ -2x+5=0$ — искомое уравнение.
Рассмотрим квадратное уравнение с комплексными коэффициентами.
Решить уравнение: $z^ +(1-2i)cdot z-(1+i)=0$ и изобразить корни на плоскости.
Так как $D>0$, уравнение имеет два корня:
Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.
В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 11 2021
Сергей Евгеньевич Грамотинский
Эксперт по предмету «Математика»
Работаем по будням с 10:00 до 20:00 по Мск
. и многие другие.
Успешной учебы! Будем рады вам помочь!
📹 Видео
Комплексные корни квадратных уравнений. 11 класс.Скачать
Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать
Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать
10 класс, 35 урок, Комплексные числа и квадратные уравненияСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Решение квадратного уравнения с выводом формулы корнейСкачать
Комплексные числа в уравненияхСкачать
Решение квадратных уравнений в поле комплексных чиселСкачать
Возведение в степень и извлечение корня из комплексного числаСкачать
Тригонометрическая форма комплексного числаСкачать
КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Формула для корней и теорема Виета | Квадратный трёхчлен #1 | Ботай со мной #020 | Борис ТрушинСкачать
Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать